Kinetically controlled composition of III-V ternary nanostructures

[1]  V. Dubrovskii,et al.  Kinetic modeling of interfacial abruptness in axial nanowire heterostructures , 2022, Nanotechnology.

[2]  M. Friedl,et al.  Selective area epitaxy of GaAs: the unintuitive role of feature size and pitch , 2022, Nanotechnology.

[3]  V. Fedorov,et al.  Formation of wurtzite sections in self-catalyzed GaP nanowires by droplet consumption , 2021, Nanotechnology.

[4]  G. Patriarche,et al.  Dynamics of Droplet Consumption in Vapor–Liquid–Solid III–V Nanowire Growth , 2021, Crystal Growth & Design.

[5]  K. Dick,et al.  Compositional Correlation between the Nanoparticle and the Growing Au-Assisted InxGa1–xAs Nanowire , 2021, The journal of physical chemistry letters.

[6]  H. Tan,et al.  Selective area epitaxy of III–V nanostructure arrays and networks: Growth, applications, and future directions , 2021 .

[7]  P. Tomasini Vapor – Solid distribution of silicon germanium chemical vapor deposition determined with classical thermodynamics , 2021, Journal of Crystal Growth.

[8]  J. Johansson,et al.  Role of Thermodynamics and Kinetics in the Composition of Ternary III-V Nanowires , 2020, Nanomaterials.

[9]  M. Ghasemi,et al.  Assembling your nanowire: an overview of composition tuning in ternary III–V nanowires , 2020, Nanotechnology.

[10]  S. Kukushkin,et al.  Development of Burton–Cabrera–Frank Theory for the Growth of a Non-Kossel Crystal via Chemical Reaction , 2020 .

[11]  M. Magnusson,et al.  From diffusion limited to incorporation limited growth of nanowires , 2019, Journal of Crystal Growth.

[12]  Huiyun Liu,et al.  III–V ternary nanowires on Si substrates: growth, characterization and device applications , 2019, Journal of Semiconductors.

[13]  V. Dubrovskii Evolution of the Length and Radius of Catalyst-Free III–V Nanowires Grown by Selective Area Epitaxy , 2019, ACS omega.

[14]  F. Boekhout,et al.  Selectivity Map for Molecular Beam Epitaxy of Advanced III–V Quantum Nanowire Networks , 2018, Nano letters.

[15]  H. Amano,et al.  Compositional control of homogeneous InGaN nanowires with the In content up to 90% , 2018, Nanotechnology.

[16]  C. Ning,et al.  Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions , 2017 .

[17]  V. Dubrovskii,et al.  Understanding the composition of ternary III-V nanowires and axial nanowire heterostructures in nucleation-limited regime , 2017 .

[18]  V. Dubrovskii Understanding the vapor–liquid–solid growth and composition of ternary III–V nanowires and nanowire heterostructures , 2017 .

[19]  Y. Bando,et al.  Semiconductor Solid-Solution Nanostructures: Synthesis, Property Tailoring, and Applications. , 2017, Small.

[20]  F. Glas Comparison of Modeling Strategies for the Growth of Heterostructures in III–V Nanowires , 2017 .

[21]  Jongseung Yoon III-V Nanomembranes for High Performance, Cost-Competitive Photovoltaics , 2017 .

[22]  M. Ghasemi,et al.  Composition of Gold Alloy Seeded InGaAs Nanowires in the Nucleation Limited Regime , 2017 .

[23]  N. Akopian,et al.  Origin of Spontaneous Core–Shell AlGaAs Nanowires Grown by Molecular Beam Epitaxy , 2016 .

[24]  Roberto Paiella,et al.  SiGe Nanomembrane Quantum-Well Infrared Photodetectors , 2016 .

[25]  T. Kuech III-V compound semiconductors: Growth and structures , 2016 .

[26]  V. Dubrovskii Group V sensitive vapor–liquid–solid growth of Au-catalyzed and self-catalyzed III–V nanowires , 2016 .

[27]  G. Patriarche,et al.  Sharpening the Interfaces of Axial Heterostructures in Self-Catalyzed AlGaAs Nanowires: Experiment and Theory. , 2016, Nano letters.

[28]  V. Dubrovskii Fully Analytical Description for the Composition of Ternary Vapor–Liquid–Solid Nanowires , 2015 .

[29]  J. Tersoff,et al.  Stable Self-Catalyzed Growth of III-V Nanowires. , 2015, Nano letters.

[30]  G. Patriarche,et al.  Abrupt GaP/GaAs Interfaces in Self-Catalyzed Nanowires. , 2015, Nano letters.

[31]  P. Caroff,et al.  Self-Equilibration of the Diameter of Ga-Catalyzed GaAs Nanowires. , 2015, Nano letters.

[32]  H. Tan,et al.  InxGa1−xAs nanowires with uniform composition, pure wurtzite crystal phase and taper-free morphology , 2015, Nanotechnology.

[33]  V. Dubrovskii,et al.  Diffusion-induced growth of nanowires: Generalized boundary conditions and self-consistent kinetic equation , 2014 .

[34]  Y. Haddara,et al.  Modelling of InGaP nanowires morphology and composition on molecular beam epitaxy growth conditions , 2014 .

[35]  G. Abstreiter,et al.  Growth and properties of InGaAs nanowires on silicon , 2014 .

[36]  V. Dubrovskii Nucleation Theory and Growth of Nanostructures , 2013 .

[37]  L. Wernersson,et al.  Control of composition and morphology in InGaAs nanowires grown by metalorganic vapor phase epitaxy , 2013 .

[38]  P. Dapkus,et al.  Twin-free GaAs nanosheets by selective area growth: implications for defect-free nanostructures. , 2013, Nano letters.

[39]  B. Borg,et al.  Geometric model for metalorganic vapour phase epitaxy of dense nanowire arrays , 2013 .

[40]  Eric Pop,et al.  In(x)Ga(1-x)As nanowire growth on graphene: van der Waals epitaxy induced phase segregation. , 2013, Nano letters.

[41]  M. Amann,et al.  High compositional homogeneity in In-rich InGaAs nanowire arrays on nanoimprinted SiO2/Si (111) , 2012 .

[42]  J. Wallentin,et al.  Particle-assisted GaxIn1−xP nanowire growth for designed bandgap structures , 2012, Nanotechnology.

[43]  J. Rogers,et al.  Synthesis, assembly and applications of semiconductor nanomembranes , 2011, Nature.

[44]  G. Jung,et al.  Composition and Phase Tuned InGaAs Alloy Nanowires , 2011 .

[45]  F. Glas Chemical potentials for Au-assisted vapor-liquid-solid growth of III-V nanowires , 2010 .

[46]  F. Glas Vapor fluxes on the apical droplet during nanowire growth by molecular beam epitaxy , 2010 .

[47]  R. LaPierre,et al.  Analytical description of the metal-assisted growth of III–V nanowires: Axial and radial growths , 2009 .

[48]  Sadao Adachi,et al.  Properties of Semiconductor Alloys , 2009 .

[49]  J. Morante,et al.  Catalyst-free nanowires with axial InxGa1−xAs/GaAs heterostructures , 2009, Nanotechnology.

[50]  P. Yang Nanowire Photonics , 2007, 2007 International Nano-Optoelectronics Workshop.

[51]  D. Kashchiev Dependence of the Growth Rate of Nanowires on the Nanowire Diameter , 2006 .

[52]  L. Samuelson,et al.  Mass transport model for semiconductor nanowire growth. , 2005, The journal of physical chemistry. B.

[53]  N. V. Sibirev,et al.  The diffusion mechanism in the formation of GaAs and AlGaAs nanowhiskers during the process of molecular-beam epitaxy , 2005 .

[54]  Y. Kumagai,et al.  Thermodynamic analysis of InN and InxGa1−xN MOVPE using various nitrogen sources , 2004 .

[55]  D. Kofke,et al.  Molecular simulation study of miscibility of ternary and quaternary InGaAlN alloys , 2004 .

[56]  I. Ansara,et al.  Optimisation of the thermodynamic and phase diagram data in the ternary As-Ga-In system , 1995 .

[57]  I. Ansara,et al.  A binary database for III–V compound semiconductor systems , 1994 .

[58]  C. Tu,et al.  A kinetic model for As and P incorporation behaviors in GaAsP grown by gas-source molecular beam epitaxy , 1993 .

[59]  W. D. Johnston,et al.  Surface layer spinodal decomposition in In1−xGaxAsyP1−y and In1−xGaxAs grown by hydride transport vapor‐phase epitaxy , 1985 .

[60]  K. Kajiyama Vapor Pressure Dependence of the Relative Composition of III–V Mixed Crystals in Vapor Phase Epitaxy , 1976 .

[61]  W. K. Burton,et al.  The growth of crystals and the equilibrium structure of their surfaces , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.