THICKET DENSITY

Abstract We define a new type of “shatter function” for set systems that satisfies a Sauer–Shelah type dichotomy, but whose polynomial-growth case is governed by Shelah’s two-rank instead of VC dimension. We identify the least exponent bounding the rate of growth of the shatter function, the quantity analogous to VC density, with Shelah’s $\omega $ -rank.

[1]  Vincent Guingona,et al.  On a common generalization of Shelah's 2-rank, dp-rank, and o-minimal dimension , 2015, Ann. Pure Appl. Log..

[2]  Deirdre Haskell,et al.  Vapnik-Chervonenkis Density in some Theories without the Independence Property, II , 2015 .

[3]  Sheila A. Greibach,et al.  Theory of Program Structures: Schemes, Semantics, Verification , 1976, Lecture Notes in Computer Science.

[4]  Michael Ben-Or,et al.  Lower bounds for algebraic computation trees , 1983, STOC.

[5]  Jerzy Tiuryn,et al.  A Simplified Proof of DDL < DL , 1989, Inf. Comput..

[6]  S. Shelah,et al.  Regularity lemmas for stable graphs , 2011, 1102.3904.

[7]  P. Assouad Densité et dimension , 1983 .

[8]  J. V. Tucker,et al.  Computable functions and semicomputable sets on many-sorted algebras , 2001, Logic in Computer Science.

[9]  Nancy A. Lynch,et al.  Relative complexity of operations on numeric and bit-string algebras , 2005, Mathematical systems theory.

[10]  Michael C. Laskowski,et al.  Vapnik-Chervonenkis classes of definable sets , 1992 .

[11]  Anand Pillay,et al.  Introduction to stability theory , 1983, Oxford logic guides.

[12]  Deirdre Haskell,et al.  Vapnik-Chervonenkis Density in Some Theories without the Independence Property, II , 2011, Notre Dame J. Formal Log..

[13]  Yiannis N. Moschovakis,et al.  Abstract Recursion and Intrinsic Complexity , 2018 .

[14]  Maryanthe Malliaris,et al.  On unavoidable-induced subgraphs in large prime graphs , 2018, J. Graph Theory.

[15]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[16]  Hunter Chase,et al.  Model Theory and Machine Learning , 2019, Bull. Symb. Log..