Invariant Carnot--Caratheodory Metrics on S3, SO(3), SL(2), and Lens Spaces

In this paper we study the Carnot-Caratheodory metrics on $SU(2)\simeq S^3$, $SO(3)$, and $SL(2)$ induced by their Cartan decomposition and by the Killing form. Besides computing explicitly geodesics and conjugate loci, we compute the cut loci (globally), and we give the expression of the Carnot-Caratheodory distance as the inverse of an elementary function. We then prove that the metric given on $SU(2)$ projects on the so-called lens spaces $L(p,q)$. Also for lens spaces, we compute the cut loci (globally). For $SU(2)$ the cut locus is a maximal circle without one point. In all other cases the cut locus is a stratified set. To our knowledge, this is the first explicit computation of the whole cut locus in sub-Riemannian geometry, except for the trivial case of the Heisenberg group.

[1]  E. Trélat,et al.  Genericity results for singular curves , 2006 .

[2]  Roger W. Brockett Explicitly solvable control problems with nonholonomic constraints , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[3]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[4]  S. Helgason LIE GROUPS AND SYMMETRIC SPACES. , 1968 .

[5]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[6]  U. Boscain,et al.  Gaussian estimates for hypoelliptic operators via optimal control , 2007 .

[7]  David L. Elliott,et al.  Geometric control theory , 2000, IEEE Trans. Autom. Control..

[8]  J. Kingdon,et al.  The shape of space , 1995 .

[9]  D. Rolfsen Knots and Links , 2003 .

[10]  B. Gaveau Principe de moindre action, propagation de la chaleur et estimees sous elliptiques sur certains groupes nilpotents , 1977 .

[11]  A. Bellaïche The tangent space in sub-riemannian geometry , 1994 .

[12]  V. Jurdjevic,et al.  Hamiltonian point of view of non-Euclidean geometry and elliptic functions , 2001, Syst. Control. Lett..

[13]  U. Boscain,et al.  NONISOTROPIC 3-LEVEL QUANTUM SYSTEMS: COMPLETE SOLUTIONS FOR MINIMUM TIME AND MINIMUM ENERGY , 2004, quant-ph/0409022.

[14]  Yakov Eliashberg,et al.  Contact 3-manifolds twenty years since J. Martinet's work , 1992 .

[15]  Albert Boggess,et al.  CR Manifolds and the Tangential Cauchy-Riemann Complex , 1991 .

[16]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[17]  A. Agrachev Exponential mappings for contact sub-Riemannian structures , 1996 .

[18]  M. Gromov Carnot-Carathéodory spaces seen from within , 1996 .

[19]  A. Agrachev,et al.  A. Agrachev COMPACTNESS FOR SUB-RIEMANNIAN LENGTH-MINIMIZERS AND SUBANALYTICITY , 1999 .

[20]  V. Jurdjevic Optimal control, geometry, and mechanics , 1998 .

[21]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[22]  M. Chyba,et al.  Singular Trajectories and Their Role in Control Theory , 2003, IEEE Transactions on Automatic Control.

[23]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[24]  D. Wishart Introduction to the Mathematical Theory of Control Processes. Volume 1—Linear Equations and Quadratic Criteria , 1969 .

[25]  Andrei A. Agrachev,et al.  Methods of Control Theory in Nonholonomic Geometry , 1995 .

[26]  B. Piccoli,et al.  Optimal Syntheses for Control Systems on 2-D Manifolds , 2004 .

[27]  Richard Bellman,et al.  Introduction to the mathematical theory of control processes , 1967 .

[28]  Jean-Paul Gauthier,et al.  On the K + P Problem for a Three-Level Quantum System: Optimality Implies Resonance , 2002 .

[29]  B. Gaveau,et al.  Hamilton–Jacobi theory and the heat kernel on Heisenberg groups , 2000 .

[30]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[31]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[32]  astronomy Physics,et al.  Principe de Moindre Action , 2010 .