Recent Advances in Linear Models and Related Areas: Essays in Honour of Helge Toutenburg

The theory of linear models and regression analysis plays an essential role in the development of methods for the statistical modelling of data. The book presents the most recent developments in the theory and applications of linear models and related areas of active research. The contributions include topics such as boosting, Cox regression models, cluster analysis, design of experiments, feasible generalized least squares, information theory, matrix theory, measurement error models, missing data models, mixture models, panel data models, penalized least squares, prediction, regression calibration, spatial models and time series models. Several contributions illustrate applications in biomedical research, economics, finance, genetic epidemiology and medicine.

[1]  Alan T. K. Wan Risk Comparison of the Inequality Constrained Least Squares and Other Related Estimators Under Balanced Loss , 1994 .

[2]  A. K. Md. Ehsanes Saleh,et al.  Improved estimation of regression parameters in measurement error models , 2005 .

[3]  Edmund Taylor Whittaker On a New Method of Graduation , 1922, Proceedings of the Edinburgh Mathematical Society.

[4]  Yasuo Amemiya,et al.  Prediction When Both Variables are Subject to Error, with Application to Earthquake Magnitudes , 1983 .

[5]  A. Raftery,et al.  Detecting features in spatial point processes with clutter via model-based clustering , 1998 .

[6]  Sylvia Frühwirth-Schnatter,et al.  Finite Mixture and Markov Switching Models , 2006 .

[7]  S. Lang,et al.  Bayesian P-Splines , 2004 .

[8]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[9]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[10]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[11]  A. Goldberger,et al.  On Pure and Mixed Statistical Estimation in Economics , 1961 .

[12]  A. Satorra,et al.  Measurement Error Models , 1988 .

[13]  Guoqi Qian,et al.  Law of iterated logarithm and consistent model selection criterion in logistic regression , 2002 .

[14]  B. Segerstedt On ordinary ridge regression in generalized linear models , 1992 .

[15]  R. Carroll,et al.  Nonparametric Function Estimation for Clustered Data When the Predictor is Measured without/with Error , 2000 .

[16]  Michael Thomson,et al.  Some results on the statistical properties of an inequality constrained least squares estimator in a linear model with two regressors , 1982 .

[17]  Tieshan Li,et al.  The Lead-Lag Puzzle of Demand and Distribution: A Graphical Method Applied to Movies , 2005 .

[18]  Noel A Cressie,et al.  Improved multivariate prediction under a general linear model , 1993 .

[19]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[20]  Mee Young Park,et al.  L1‐regularization path algorithm for generalized linear models , 2007 .

[21]  H. Schneeweiß Note on a linear model with errors in the variables and with trend , 1991 .

[22]  S. Sathiya Keerthi,et al.  A simple and efficient algorithm for gene selection using sparse logistic regression , 2003, Bioinform..

[23]  Małgorzata Domagalik U.U.F. , 2001 .

[24]  L. Fahrmeir,et al.  Correction: Consistency and Asymptotic Normality of the Maximum Likelihood Estimator in Generalized Linear Models , 1985 .

[25]  Sudhir Gupta,et al.  Statistical Regression With Measurement Error , 1999, Technometrics.

[26]  Jan R. Magnus,et al.  The Traditional Pretest Estimator , 1999 .

[27]  Götz Trenkler The vector cross product from an algebraic point of view , 2001 .

[28]  Paul Dierckx,et al.  Curve and surface fitting with splines , 1994, Monographs on numerical analysis.

[29]  Timo Teräsvirta,et al.  Superiority comparisons of heterogeneous linear estimators , 1982 .

[30]  Shalabh,et al.  Improved estimation of the slope parameter in a linear ultrastructural model when measurement errors are not necessarily normal , 1997 .

[31]  R. Paley On Orthogonal Matrices , 1933 .

[32]  Martin L. Puterman,et al.  Mixed logistic regression models , 1998 .

[33]  Dankmar Böhning,et al.  The zero‐inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology , 1999 .

[34]  Prasad A. Naik,et al.  Extending the Akaike Information Criterion to Mixture Regression Models , 2007 .

[35]  Alan T. K. Wan,et al.  Optimal critical values of pre-tests when estimating the regression error variance: analytical findings under a general loss structure , 2003 .

[36]  C. Theobald Generalizations of Mean Square Error Applied to Ridge Regression , 1974 .

[37]  Robert E. Krider,et al.  Clustering at the Movies , 1998 .

[38]  J. Anderson,et al.  Penalized maximum likelihood estimation in logistic regression and discrimination , 1982 .

[39]  Naisyin Wang Marginal nonparametric kernel regression accounting for within‐subject correlation , 2003 .

[40]  H. Schneeweiß A Simple Regression Model with Trend and Error in the Exogenous Variable , 1982 .

[41]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[42]  Jan R. Magnus,et al.  Local Sensitivity and Diagnostic Tests , 2004 .

[43]  Götz Trenkler,et al.  Mean squared error matrix comparisons between biased estimators — An overview of recent results , 1990 .

[44]  L. Fahrmeir,et al.  Multivariate statistical modelling based on generalized linear models , 1994 .

[45]  Oliver Linton,et al.  Correlation and Marginal Longitudinal Kernel Nonparametric Regression , 2004 .

[46]  B. Lindsay Moment Matrices: Applications in Mixtures , 1989 .

[47]  Pushpakanthie Wijekoon,et al.  Pre-test estimation in the linear regression model under stochastic restrictions , 1995 .

[48]  Gerhard Tutz,et al.  Boosting ridge regression , 2007, Comput. Stat. Data Anal..

[49]  L. Fahrmeir,et al.  PENALIZED STRUCTURED ADDITIVE REGRESSION FOR SPACE-TIME DATA: A BAYESIAN PERSPECTIVE , 2004 .

[50]  Gerhard Tutz,et al.  Penalized regression with correlation-based penalty , 2009, Stat. Comput..

[51]  Helge Toutenburg,et al.  Prediction of response values in linear regression models from replicated experiments , 2002 .

[52]  Helge Toutenburg,et al.  Improved Predictions in Linear Regression Models with Stochastic Linear Constraints , 2000 .

[53]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[54]  Alan T. K. Wan,et al.  Improved multivariate prediction in a general linear model with an unknown error covariance matrix , 2002 .

[55]  Götz Trenkler,et al.  Mean square error matrix comparisons of optimal and classical predictors and estimators in linear regression , 1990 .

[56]  Shalabh,et al.  Linear Models and Generalizations: Least Squares and Alternatives , 2007 .

[57]  P. Bühlmann,et al.  Boosting with the L2-loss: regression and classification , 2001 .

[58]  Yasuyuki Toyooka Prediction error in a linear model with estimated parameters , 1982 .

[59]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[60]  Tapio Nummi,et al.  Estimation and prediction for low degree polynomial models under measurement errors with an application to forest harvesters , 2004 .

[61]  A. M. Mathai,et al.  Quadratic forms in random variables : theory and applications , 1992 .

[62]  George G. Judge,et al.  Improved methods of inference in econometrics , 1986 .

[63]  Aman Ullah,et al.  Finite Sample Econometrics , 2004 .

[64]  Longcheen Huwang,et al.  Prediction and confidence intervals for nonlinear measurement error models without identifiability information , 2002 .

[65]  J P Buonaccorsi Prediction in the presence of measurement error: general discussion and an example predicting defoliation. , 1995, Biometrics.

[66]  L. Stefanski Unbiased estimation of a nonlinear function a normal mean with application to measurement err oorf models , 1989 .

[67]  Diane Lambert,et al.  Generalizing Logistic Regression by Nonparametric Mixing , 1989 .

[68]  M. Schervish,et al.  Prior information in linear models , 1983 .

[69]  Shalabh Unbiased prediction in linear regression models with equi-correlated responses , 1998 .

[70]  P. Sprent,et al.  A Generalized Least‐Squares Approach to Linear Functional Relationships , 1966 .

[71]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[72]  G. Tutz,et al.  Generalized Smooth Monotonic Regression in Additive Modeling , 2007 .

[73]  Guohua Zou,et al.  On the Sensitivity of the Restricted Least Squares Estimators to Covariance Misspecification , 2007 .

[74]  R. Carter Hill,et al.  Missing regressor values under conditions of multicollinearity , 1983 .

[75]  A. Zellner,et al.  Forecasting international growth rates using Bayesian shrinkage and other procedures , 1989 .

[76]  H. Schneeweiß,et al.  Polynomial regression with errors in the variables , 1998 .

[77]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[78]  Teun Kloek,et al.  OLS Estimation in a Model Where a Microvariable Is Explained by Aggregates and Contemporaneous Disturbances Are Equicorrelated , 1979 .

[79]  Alan T. K. Wan Estimating the error variance after a pre-test for an inequality restriction on the coefficients , 1996 .

[80]  A. Doma Generalized Inverses of Matrices and Its Applications. , 1983 .

[81]  Guohua Zou,et al.  Further Results on Optimal Critical Values of Pre-Test When Estimating the Regression Error Variance , 2006 .

[82]  G. Judge,et al.  The Theory and Practice of Econometrics , 1981 .

[83]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[84]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[85]  M. Pesaran Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure , 2004, SSRN Electronic Journal.

[86]  Heleno Bolfarine,et al.  Prediction Theory for Finite Populations , 1992 .

[87]  Takeaki Kariya,et al.  Bounds for normal approximations to the distributions of generalized least squares predictors and estimators , 1992 .

[88]  Janusz,et al.  Geometrical Methods in Robotics , 1996, Monographs in Computer Science.

[89]  S. Altmann Rotations, Quaternions, and Double Groups , 1986 .

[90]  Murray Aitkin,et al.  A general maximum likelihood analysis of overdispersion in generalized linear models , 1996, Stat. Comput..

[91]  ötz Trenkler,et al.  Mean square error matrix comparisons of estimators in linear regression , 1985 .

[92]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[93]  Gunnar Rätsch,et al.  An Introduction to Boosting and Leveraging , 2002, Machine Learning Summer School.

[94]  G. R. Dolby The ultrastructural relation: A synthesis of the functional and structural relations , 1976 .

[95]  D. V. Lindley,et al.  The Bayesian Estimation of a Linear Functional Relationship , 1968 .

[96]  Jan R. Magnus,et al.  The sensitivity of OLS when the variance matrix is (partially) unknown , 1999 .

[97]  G. Kauermann,et al.  A Note on Penalized Spline Smoothing With Correlated Errors , 2007 .

[98]  Shahjahan Khan,et al.  Predictive inference on equicorrelated linear regression models , 1998, Appl. Math. Comput..

[99]  R. P. Singh,et al.  Rate of spread of PVYn by alateMyzus persicae (Sulzer) from infected to healthy plants under laboratory conditions , 1998, Potato Research.

[100]  Helge Toutenburg,et al.  Predictive Performance of the Methods of Restricted and Mixed Regression Estimators , 1996 .

[101]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[102]  T. Santner,et al.  On the small sample properties of norm-restricted maximum likelihood estimators for logistic regression models , 1989 .

[103]  Guohua Zou,et al.  On the sensitivity of the one-sided t test to covariance misspecification , 2009, J. Multivar. Anal..

[104]  Alan T. K. Wan THE SAMPLING PERFORMANCE OF INEQUALITY RESTRICTED AND PRE‐TEST ESTIMATORS IN A MIS‐SPECIFIED LINEAR MODEL , 1994 .

[105]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[106]  S. Dibb Market Segmentation: Conceptual and Methodological Foundations (2nd edition) , 2000 .

[107]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[108]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[109]  H. Nyquist Restricted Estimation of Generalized Linear Models , 1991 .

[110]  Götz Trenkler Biased estimators in the linear regression model , 1981 .

[111]  G. B. Schaalje,et al.  SOME EFFECTS OF IGNORING CORRELATED MEASUREMENT ERRORS IN STRAIGHT LINE REGRESSION AND PREDICTION , 1993 .

[112]  Jan R. Magnus,et al.  On the sensitivity of the usual t- and F-tests to covariance misspecification , 2000 .

[113]  R. Schaefer,et al.  A ridge logistic estimator , 1984 .