Modelling magnetorheological dampers in preyield and postyield regions

The use of magnetorheological dampers has rapidly spread to many engineering applications, especially those related to transportation and civil engineering. The problem arises upon modelling their highly nonlinear behaviour: in spite of the huge number of apparently accurate models in the literature, most fail when considering the overall magnetomechanical behaviour. In this study, a brief but broad review of different magnetorheological damper models has been carried out, which includes characterisation, modelling, and comparison. Unlike many other studies, the analyses cover the behaviour from preyield to postyield regions of the MR fluid. The performance of the different models has been assessed by means of numerous experimental tests and by means of simulations in a simple and straightforward semiactive control case study. The results obtained prove that most models usually fail in predicting accurate low-velocity behaviour (before iron chains yield) and, as a result, may lead to bad estimations when used in control schemes due to modelling errors and chattering.

[1]  Wei-Hsin Liao,et al.  Semiactive Vibration Control of Train Suspension Systems via Magnetorheological Dampers , 2003 .

[2]  A. Sano,et al.  Local modeling approach to vibration control by MR damper , 2004, SICE 2004 Annual Conference.

[3]  B. F. Spencer,et al.  STATE OF THE ART OF STRUCTURAL CONTROL , 2003 .

[4]  D. Klingenberg,et al.  Magnetorheological fluids: a review , 2011 .

[5]  S. Rigby,et al.  Electrorheological fluids applied to an automotive engine mount , 1993 .

[6]  J. Claracq,et al.  Viscoelastic properties of magnetorheological fluids , 2004 .

[7]  B. L. Boada,et al.  A novel inverse dynamic model for a magnetorheological damper based on network inversion , 2018 .

[8]  Wei-Hsin Liao,et al.  Vibration control of a suspension system via a magnetorheological fluid damper , 2000, Symposium on Applied Photonics.

[9]  H. Choi,et al.  Magnetorheological characterization of carbonyl iron based suspension stabilized by fumed silica , 2004 .

[10]  Shirley J. Dyke,et al.  Phenomenological Model of a Magnetorheological Damper , 1996 .

[11]  Wei-Hsin Liao,et al.  Magnetorheological fluid dampers: a review of parametric modelling , 2011 .

[12]  Bijan Samali,et al.  A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization , 2006 .

[13]  O. Park,et al.  Rheological Properties and Stabilization of Magnetorheological Fluids in a Water-in-Oil Emulsion. , 2001, Journal of colloid and interface science.

[14]  Abdul-Ghani Olabi,et al.  Design and application of magneto-rheological fluid , 2007 .

[15]  E. C. Bingham Fluidity And Plasticity , 1922 .

[16]  Subhash Rakheja,et al.  EVALUATION OF VIBRATION AND SHOCK ATTENUATION PERFORMANCE OF A SUSPENSION SEAT WITH A SEMI-ACTIVE MAGNETORHEOLOGICAL FLUID DAMPER , 2002 .

[17]  Carlos Canudas-de-Wit,et al.  Friction compensation for an industrial hydraulic robot , 1999 .

[18]  Wei-Hsin Liao,et al.  Modeling and control of magnetorheological fluid dampers using neural networks , 2005 .

[19]  Wei-Hsin Liao,et al.  Semi-active control of automotive suspension systems with magneto-rheological dampers , 2003 .

[20]  Marina Schroder,et al.  Structural Control Past Present And Future , 2016 .

[21]  L. Richter,et al.  Magnetorheologic fluids for actuators , 2001 .

[22]  Seung-bok Choi,et al.  Vibration Control of a MR Seat Damper for Commercial Vehicles , 2000 .

[23]  Wang,et al.  SEMI-ACTIVE CONTROL OF VEHICLE SUSPENSION WITH MAGNETO-RHEOLOGICAL DAMPERS:PART III—EXPERIMENTAL VALIDATION , 2008 .

[24]  Hyung-Jo Jung,et al.  State-of-the-art of semiactive control systems using MR fluid dampers in civil engineering applications , 2004 .

[25]  J. L. Sproston,et al.  Non-linear modelling of an electro-rheological vibration damper , 1987 .

[26]  Wei-Hsin Liao,et al.  Semi-active suspension systems for railway vehicles using magnetorheological dampers. Part I: system integration and modelling , 2009 .

[27]  Sami Montassar,et al.  A hysteretic Bingham model for MR dampers to control cable vibrations , 2015 .

[28]  J. Rabinow The magnetic fluid clutch , 1948, Electrical Engineering.

[29]  Jonathan W. Bender,et al.  Properties and Applications of Commercial Magnetorheological Fluids , 1998, Smart Structures.

[30]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[31]  P. Dahl Solid Friction Damping of Mechanical Vibrations , 1976 .

[32]  Norman M. Wereley,et al.  Dynamic characterization and analysis of magnetorheological damper behavior , 1998, Smart Structures.

[33]  Faramarz Gordaninejad,et al.  Field-controllable electro- and magneto-rheological fluid dampers in flow mode using Herschel-Bulkley theory , 2000, Smart Structures.

[34]  Søren Nielsen,et al.  Semi-active control of three-dimensional vibrations of an inclined sag cable with magnetorheological dampers , 2006 .

[35]  Winslow H. Herschel,et al.  Konsistenzmessungen von Gummi-Benzollösungen , 1926 .

[36]  Michael J. Brennan,et al.  A comparison of semi-active damping control strategies for vibration isolation of harmonic disturbances , 2005 .

[37]  Faramarz Gordaninejad,et al.  Fail-Safe Magneto-Rheological Fluid Dampers for Off-Highway, High-Payload Vehicles , 2000 .

[38]  J. L. Sproston,et al.  Applications of electro-rheological fluids in vibration control: a survey , 1996 .

[39]  Seung-Ik Lee,et al.  A hysteresis model for the field-dependent damping force of a magnetorheological damper , 2001 .

[40]  Wei-Hsin Liao,et al.  Semi-active suspension systems for railway vehicles using magnetorheological dampers. Part II: simulation and analysis , 2009 .

[41]  D. Gamota,et al.  Dynamic mechanical studies of electrorheological materials: Moderate frequencies , 1991 .

[42]  Neil D. Sims,et al.  Magnetorheological landing gear: 1. A?design methodology , 2007 .

[43]  J. Carlson,et al.  MR fluid, foam and elastomer devices , 2000 .

[44]  T. Papanastasiou Flows of Materials with Yield , 1987 .

[45]  J. Rabinow The Magnetic Fluid Clutch , 1948, Transactions of the American Institute of Electrical Engineers.

[46]  Billie F. Spencer,et al.  Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction , 1996 .

[47]  Shirley J. Dyke,et al.  PHENOMENOLOGICAL MODEL FOR MAGNETORHEOLOGICAL DAMPERS , 1997 .

[48]  Billie F. Spencer,et al.  Modeling MR-dampers: the ridgenet estimation approach , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[49]  Y. Wen Method for Random Vibration of Hysteretic Systems , 1976 .

[50]  P. N. Roschke,et al.  Fuzzy modeling of a magnetorheological damper using ANFIS , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[51]  Seung-bok Choi,et al.  Control and Response Characteristics of a Magneto-Rheological Fluid Damper for Passenger Vehicles , 2000 .

[52]  Mehdi Ahmadian,et al.  A Quarter-Car Experimental Analysis of Alternative Semiactive Control Methods , 2000 .

[53]  Doyoung Jeon,et al.  Vibration Suppression in an MR Fluid Damper Suspension System , 1999 .

[54]  G Chen,et al.  MR damper and its application for semi-active control of vehicle suspension system , 2002 .

[55]  Khanh Pham,et al.  Modeling MR-dampers: a nonlinear blackbox approach , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[56]  Shaopu Yang,et al.  Dynamic Modeling of Magnetorheological Damper Behaviors , 2006 .

[57]  Mehdi Ahmadian,et al.  Modeling Magnetorheological Dampers with Application of Nonparametric Approach , 2005 .

[58]  Hyoung Jin Choi,et al.  Magnetorheology: Materials and Application , 2011 .