Time-domain forward and inverse modeling of lossy soils with frequency-independent Q for near-surface applications

Abstract In this paper, we are concerned with a full-waveform-based methodology that allows the simultaneous imaging of the soil's stiffness and attenuating properties, using solely the soil's surficial response to probing waves. To date, field observations of small-strain wave attenuation in geomaterials at moderate spatial scales suggest that a commonly used metric of intrinsic and apparent attenuation, the seismic quality factor Q , is frequency-independent for a wide part of the frequency spectrum, including the frequency range of interest to seismic applications. We discuss first the forward simulation of waves in near-surface soil deposits directly in the time-domain using simplified models that adequately approximate nearly frequency-independent Q . To this end, we first review various attenuation models that aim at reproducing the frequency-independent Q behavior, and conclude, supported by site analyses, that, even though a generalized Maxwell body with eight Maxwell elements in parallel (GMB8) provides the best fit to frequency-independent Q , we favor a version of it with fewer parameters (GMB2), in order to reduce modeling complexity, while still retaining good agreement with the GMB8 model. We report on forward site analyses that lend credence to the choice of the GMB2 simplified model. We, then, use the GMB2 constitutive relation in the context of full-waveform inversion, and report on numerical experiments that lead to the imaging of the soil's properties in heterogeneous semi-infinite domains.

[1]  Pengcheng Liu,et al.  Efficient Modeling of Q for 3D Numerical Simulation of Wave Propagation , 2006 .

[2]  W R Hudson,et al.  DEFORMATIONAL CHARACTERISTICS OF SOILS AT SMALL TO INTERMEDIATE STRAINS FROM CYCLIC TESTS. INTERIM REPORT , 1992 .

[3]  G. Muller Rheological properties and velocity dispersion of a medium with power-law dependence of Q on frequency , 1984 .

[4]  V. Akcelik,et al.  Full Waveform Inversion for Seismic Velocity and Anelastic Losses in Heterogeneous Structures , 2007 .

[5]  M. Vucetic,et al.  INFLUENCE OF SOIL TYPE ON THE EFFECT OF STRAIN RATE ON SMALL-STRAIN CYCLIC SHEAR MODULUS , 2003 .

[6]  Fumio Tatsuoka,et al.  SMALL STRAIN BEHAVIOR OF GEOMATERIALS : MODELLING OF STRAIN RATE EFFECTS , 1997 .

[7]  F. Tatsuoka,et al.  Stiffness of hard soils and soft rocks in engineering applications, Keynote Lecture , 1995 .

[8]  Fumio Tatsuoka,et al.  Measurements of elastic properties of geomaterials in laboratory compression tests , 1994 .

[9]  Yanghua Wang,et al.  Modified Kolsky model for seismic attenuation and dispersion , 2004 .

[10]  A. d'Onofrio,et al.  Strain Rate Dependent Behaviour of a Natural Stiff Clay , 1999 .

[11]  Youssef M A Hashash,et al.  Viscous damping formulation and high frequency motion propagation in non-linear site response analysis , 2002 .

[12]  Fumio Tatsuoka,et al.  Deformation characteristics of soils and soft rocks under monotonic and cyclic loads and their relationships , 1995 .

[13]  M. N. Toksoz,et al.  Attenuation of seismic waves in dry and saturated rocks: II. Mechanisms , 1979 .

[14]  The finite-difference method for seismologists ; an introduction , 2004 .

[15]  Michele Jamiolkowski,et al.  Stiffness of Carbonatic Quiou Sand from CPT , 1998 .

[16]  A. Dziewoński On Regional Differences in Dispersion of Mantle Rayleigh Waves , 1971 .

[17]  Taro Uchimura,et al.  Time-dependent deformation characteristics of stiff geomaterials in engineering practice , 1999 .

[18]  G. B. The Dynamical Theory of Gases , 1916, Nature.

[19]  Einar Kjartansson,et al.  Constant Q-wave propagation and attenuation , 1979 .

[20]  K. Stokoe,et al.  EFFECTS OF VARIOUS PARAMETERS ON THE STIFFNESS AND DAMPING OF SOILS AT SMALL TO MEDIUM STRAINS , 1995 .

[21]  K. Cole,et al.  Dispersion and Absorption in Dielectrics II. Direct Current Characteristics , 1942 .

[22]  F. Tatsuoka,et al.  Deformation characteristics at small strains of sedimentary soft rocks by triaxial compression tests , 1994 .

[23]  Walter I. Futterman,et al.  Dispersive body waves , 1962 .

[24]  Kenneth H. Stokoe,et al.  Dynamic soil properties: Laboratory, field and correlation studies , 1999 .

[25]  J. Semblat Amortissement et dispersion des ondes : points de vue physique et numérique , 1998 .

[26]  Shuo Ma,et al.  Modeling of the Perfectly Matched Layer Absorbing Boundaries and Intrinsic Attenuation in Explicit Finite-Element Methods , 2006 .

[27]  S. Ni,et al.  Dynamic properties of sand under true triaxial stress states from resonant column/Torsional shear tests , 1987 .

[28]  E. Strick,et al.  The Determination of Q, Dynamic Viscosity and Transient Creep Curves from Wave Propagation Measurements* , 1967 .

[29]  N. Lucet Vitesse et attenuation des ondes elastiques soniques et ultrasoniques dans les roches sous pression de confinement , 1989 .

[30]  J. Bernard Minster,et al.  Numerical simulation of attenuated wavefields using a Padé approximant method , 1984 .

[31]  T. Mitachi,et al.  Strain rate effects on shear modulus and damping of normally consolidated clay , 1995 .

[32]  M. Korn,et al.  Incorporation of attenuation into time-domain computations of seismic wave fields , 1987 .

[33]  O. Pallara,et al.  Damping ratio of soils from laboratory and in situ tests , 1997 .

[34]  M. Carcione,et al.  Wave propagation simulation in a linear viscoacoustic medium , 1997 .

[35]  Steven M. Day,et al.  Efficient simulation of constant Q using coarse-grained memory variables , 1998, Bulletin of the Seismological Society of America.

[36]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[37]  R. Kronig On the Theory of Dispersion of X-Rays , 1926 .

[38]  Don L. Anderson,et al.  Velocity dispersion due to anelasticity; implications for seismology and mantle composition , 1976 .

[39]  J. Maxwell,et al.  XV. On the dynamical theory of gases , 1868 .

[40]  K. Aki,et al.  Quantitative Seismology, 2nd Ed. , 2002 .

[41]  Olivier Coussy,et al.  Acoustics of Porous Media , 1988 .

[42]  William Thomson,et al.  IV. On the elasticity and viscosity of metals , 1865, Proceedings of the Royal Society of London.

[43]  José M. Carcione,et al.  Viscoacoustic wave propagation simulation in the earth , 1988 .

[44]  J. Santamarina,et al.  Attenuation in sand: an exploratory study on the small-strain behavior and the influence of moisture condensation , 2007 .

[45]  B. Hardin,et al.  SAND STIFFNESS UNDER VARIOUS TRIAXIAL STRESSES , 1966 .

[46]  Malcolm D. Bolton,et al.  Discussion: An experimental and theoretical comparison between static and dynamic torsional soil tests , 1990 .

[47]  Richard D. Woods,et al.  Laboratory Measurement of Dynamic Soil Properties , 1994 .

[48]  Jean-Franccois Semblat Rheological Interpretation of Rayleigh Damping , 1997 .

[49]  Pengcheng Liu,et al.  Non-linear multiparameter inversion using a hybrid global search algorithm: applications in reflection seismology , 1995 .

[50]  Loukas F. Kallivokas,et al.  Mixed unsplit-field perfectly matched layers for transient simulations of scalar waves in heterogeneous domains , 2010 .

[51]  Serge Leroueil,et al.  Importance of Strain Rate and Temperature Effects in Geotechnical Engineering , 1996 .

[52]  F. Tatsuoka,et al.  Deformation characteristics of soils and rocks from field and laboratory tests, Keynote Lecture , 1992 .

[53]  Y. Fung,et al.  Classical and Computational Solid Mechanics , 2001 .

[54]  D. L. Anderson,et al.  Physical mechanisms of seismic‐wave attenuation , 1970 .

[55]  H. Kolsky,et al.  LXXI. The propagation of stress pulses in viscoelastic solids , 1956 .

[56]  Bernard Budiansky,et al.  Measures of dissipation in viscoelastic media , 1978 .