Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex

The cerebral neocortex is segregated into six horizontal layers, each containing unique populations of molecularly and functionally distinct excitatory projection (pyramidal) neurons and inhibitory interneurons. Development of the neocortex requires the orchestrated execution of a series of crucial processes, including the migration of young neurons into appropriate positions within the nascent neocortex, and the acquisition of layer-specific neuronal identities and axonal projections. Here, we discuss emerging evidence supporting the notion that the migration and final laminar positioning of cortical neurons are also co-regulated by cell type- and layer-specific transcription factors that play concomitant roles in determining the molecular identity and axonal connectivity of these neurons. These transcriptional programs thus provide direct links between the mechanisms controlling the laminar position and identity of cortical neurons.

[1]  John G. Parnavelas,et al.  Modes of neuronal migration in the developing cerebral cortex , 2002, Nature Reviews Neuroscience.

[2]  T. Curran,et al.  Reeler: new tales on an old mutant mouse , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[3]  Embryonic vertebrate central nervous system: revised terminology. The Boulder Committee. , 1970, The Anatomical record.

[4]  S. Mcconnell,et al.  Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Christopher A Walsh,et al.  What disorders of cortical development tell us about the cortex: one plus one does not always make two. , 2011, Current opinion in genetics & development.

[6]  Thomas Wisniewski,et al.  The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes , 2010, Acta Neuropathologica.

[7]  Donald M. Bell,et al.  Proneural Transcription Factors Regulate Different Steps of Cortical Neuron Migration through Rnd-Mediated Inhibition of RhoA Signaling , 2011, Neuron.

[8]  Pasko Rakic,et al.  Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon , 1980, Journal of neurocytology.

[9]  P. Arlotta,et al.  Fezl Is Required for the Birth and Specification of Corticospinal Motor Neurons , 2005, Neuron.

[10]  L. Tsai,et al.  p35 and p39 Are Essential for Cyclin-Dependent Kinase 5 Function during Neurodevelopment , 2001, The Journal of Neuroscience.

[11]  J. Rosenfeld,et al.  Small Deletions of SATB2 Cause Some of the Clinical Features of the 2q33.1 Microdeletion Syndrome , 2009, PloS one.

[12]  Dante S. Bortone,et al.  KCC2 Expression Promotes the Termination of Cortical Interneuron Migration in a Voltage-Sensitive Calcium-Dependent Manner , 2009, Neuron.

[13]  E. Grove,et al.  Area and layer patterning in the developing cerebral cortex , 2006, Current Opinion in Neurobiology.

[14]  S. Potkin,et al.  MRNA expression patterns and distribution of white matter neurons in dorsolateral prefrontal cortex of depressed patients differ from those in schizophrenia patients , 2003, Biological Psychiatry.

[15]  V. Caviness Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. , 1982, Brain research.

[16]  D. O'Leary,et al.  Genetic regulation of arealization of the neocortex , 2008, Current Opinion in Neurobiology.

[17]  Stephanie E. Vallee,et al.  Haploinsufficiency of SOX5 at 12p12.1 is associated with developmental delays with prominent language delay, behavior problems, and mild dysmorphic features , 2012, Human mutation.

[18]  Akira Sawa,et al.  Neurodevelopmental mechanisms of schizophrenia: understanding disturbed postnatal brain maturation through neuregulin-1–ErbB4 and DISC1 , 2009, Trends in Neurosciences.

[19]  Christopher A. Walsh,et al.  Mechanisms of cerebral cortical patterning in mice and humans , 2001, Nature Neuroscience.

[20]  M. Greenberg,et al.  Coupling of cell migration with neurogenesis by proneural bHLH factors , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Judy S. H. Liu,et al.  Molecular Genetics of Neuronal Migration Disorders , 2011, Current neurology and neuroscience reports.

[22]  P. Rakić,et al.  Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain , 1990, The Journal of comparative neurology.

[23]  E. G. Jones,et al.  Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. , 1996, Archives of general psychiatry.

[24]  Daniel Mathalon,et al.  A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype. , 2009, Schizophrenia bulletin.

[25]  E. Anton,et al.  Nap1-Regulated Neuronal Cytoskeletal Dynamics Is Essential for the Final Differentiation of Neurons in Cerebral Cortex , 2007, Neuron.

[26]  Paul J. Harrison,et al.  Interstitial white matter neuron density in the dorsolateral prefrontal cortex and parahippocampal gyrus in schizophrenia , 2005, Schizophrenia Research.

[27]  A. Antonini,et al.  Ultrastructural Evidence for Synaptic Interactions between Thalamocortical Axons and Subplate Neurons , 1994, The European journal of neuroscience.

[28]  V. Broccoli,et al.  Tbr2-positive intermediate (basal) neuronal progenitors safeguard cerebral cortex expansion by controlling amplification of pallial glutamatergic neurons and attraction of subpallial GABAergic interneurons. , 2010, Genes & development.

[29]  Kathryn Roeder,et al.  Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism , 2011, Neuron.

[30]  A. Monaghan,et al.  Expression of the transcription factor, tailless, is required for formation of superficial cortical layers. , 2003, Cerebral cortex.

[31]  R. Sidman,et al.  Autoradiographic Study of Cell Migration during Histogenesis of Cerebral Cortex in the Mouse , 1961, Nature.

[32]  P. Arlotta,et al.  Neuronal subtype specification in the cerebral cortex , 2007, Nature Reviews Neuroscience.

[33]  P. Ye,et al.  Developmental expression of histone deacetylase 11 in the murine brain , 2008, Journal of neuroscience research.

[34]  Leyuan Shi,et al.  Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. , 1997, Science.

[35]  R. Ramos,et al.  RNAi reveals doublecortin is required for radial migration in rat neocortex , 2003, Nature Neuroscience.

[36]  S. Anderson,et al.  NKX 2 . 1 specifies cortical interneuron fate by activating Lhx 6 , 2022 .

[37]  Yu-Qiang Ding,et al.  Satb2 is required for dendritic arborization and soma spacing in mouse cerebral cortex. , 2012, Cerebral cortex.

[38]  D. Buxhoeveden,et al.  Disruption in the Inhibitory Architecture of the Cell Minicolumn: Implications for Autisim , 2003, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[39]  P. Rakic Specification of cerebral cortical areas. , 1988, Science.

[40]  H. Tabata,et al.  Differences of migratory behavior between direct progeny of apical progenitors and basal progenitors in the developing cerebral cortex. , 2009, Cerebral cortex.

[41]  Christopher A. Ross,et al.  A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development , 2005, Nature Cell Biology.

[42]  J. Loturco,et al.  The multipolar stage and disruptions in neuronal migration , 2006, Trends in Neurosciences.

[43]  C. Walsh,et al.  Sequential phases of cortical specification involve Neurogenin‐dependent and ‐independent pathways , 2004, The EMBO journal.

[44]  Mingfeng Li,et al.  TBR1 directly represses Fezf2 to control the laminar origin and development of the corticospinal tract , 2011, Proceedings of the National Academy of Sciences.

[45]  M. Marín‐padilla Dual origin of the mammalian neocortex and evolution of the cortical plate , 1978, Anatomy and Embryology.

[46]  B. Molyneaux,et al.  Bhlhb5 Regulates the Postmitotic Acquisition of Area Identities in Layers II-V of the Developing Neocortex , 2008, Neuron.

[47]  O. Marín,et al.  Cell migration in the forebrain. , 2003, Annual review of neuroscience.

[48]  Robert F. Hevner,et al.  Transcription factors in glutamatergic neurogenesis: Conserved programs in neocortex, cerebellum, and adult hippocampus , 2006, Neuroscience Research.

[49]  P. Rakic,et al.  SPARC-like 1 Regulates the Terminal Phase of Radial Glia-Guided Migration in the Cerebral Cortex , 2004, Neuron.

[50]  C. Weickert,et al.  Increased Interstitial White Matter Neuron Density in the Dorsolateral Prefrontal Cortex of People with Schizophrenia , 2011, Biological Psychiatry.

[51]  J. Rubenstein,et al.  Tbr1 Regulates Differentiation of the Preplate and Layer 6 , 2001, Neuron.

[52]  Robert T. Schultz,et al.  Common genetic variants on 5p14.1 associate with autism spectrum disorders , 2009, Nature.

[53]  A. Tuulio-Henriksson,et al.  Association of distinct allelic haplotypes of DISC1 with psychotic and bipolar spectrum disorders and with underlying cognitive impairments. , 2007, Human molecular genetics.

[54]  O. Britanova,et al.  Satb2 Is a Postmitotic Determinant for Upper-Layer Neuron Specification in the Neocortex , 2008, Neuron.

[55]  Kazunori Nakajima,et al.  Multipolar Migration: The Third Mode of Radial Neuronal Migration in the Developing Cerebral Cortex , 2003, The Journal of Neuroscience.

[56]  P. Greengard,et al.  A Translational Profiling Approach for the Molecular Characterization of CNS Cell Types , 2008, Cell.

[57]  Rebecca D Hodge,et al.  Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex , 2010, Proceedings of the National Academy of Sciences.

[58]  S. Lodato,et al.  Excitatory Projection Neuron Subtypes Control the Distribution of Local Inhibitory Interneurons in the Cerebral Cortex , 2011, Neuron.

[59]  E. Bacchelli,et al.  Screening of nine candidate genes for autism on chromosome 2q reveals rare nonsynonymous variants in the cAMP-GEFII gene , 2003, Molecular Psychiatry.

[60]  S. Anderson,et al.  Origins of Cortical Interneuron Subtypes , 2004, The Journal of Neuroscience.

[61]  A. Goffinet,et al.  A new view of early cortical development. , 1998, Biochemical pharmacology.

[62]  P. Rakic,et al.  Distinct functions of alpha3 and alpha(v) integrin receptors in neuronal migration and laminar organization of the cerebral cortex. , 1999, Neuron.

[63]  G. Miyoshi,et al.  Genetic Fate Mapping Reveals That the Caudal Ganglionic Eminence Produces a Large and Diverse Population of Superficial Cortical Interneurons , 2010, The Journal of Neuroscience.

[64]  Dante S. Bortone,et al.  Phosphorylation of Neurogenin2 Specifies the Migration Properties and the Dendritic Morphology of Pyramidal Neurons in the Neocortex , 2005, Neuron.

[65]  Arnold R Kriegstein,et al.  Patterns of neuronal migration in the embryonic cortex , 2004, Trends in Neurosciences.

[66]  Anastassia Stoykova,et al.  Gene networks controlling early cerebral cortex arealization , 2006, The European journal of neuroscience.

[67]  D. Stephan,et al.  Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. , 2006, The New England journal of medicine.

[68]  G. Miyoshi,et al.  Physiologically Distinct Temporal Cohorts of Cortical Interneurons Arise from Telencephalic Olig2-Expressing Precursors , 2007, The Journal of Neuroscience.

[69]  T. Curran,et al.  Role of the reelin signaling pathway in central nervous system development. , 2001, Annual review of neuroscience.

[70]  S. Mcconnell,et al.  The determination of projection neuron identity in the developing cerebral cortex , 2008, Current Opinion in Neurobiology.

[71]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[72]  神谷 篤 A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development , 2006 .

[73]  Tetsuo Noda,et al.  Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. , 2002, Genes & development.

[74]  J. Arellano,et al.  Species-Dependent Posttranscriptional Regulation of NOS1 by FMRP in the Developing Cerebral Cortex , 2012, Cell.

[75]  S. Anderson,et al.  The origin and specification of cortical interneurons , 2006, Nature Reviews Neuroscience.

[76]  O. Marín,et al.  Layer Acquisition by Cortical GABAergic Interneurons Is Independent of Reelin Signaling , 2006, The Journal of Neuroscience.

[77]  V. Lefebvre,et al.  SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons , 2008, Proceedings of the National Academy of Sciences.

[78]  Gord Fishell,et al.  The Developmental Integration of Cortical Interneurons into a Functional Network , 2022 .

[79]  D. Volk,et al.  Increased density of microtubule associated protein 2-immunoreactive neurons in the prefrontal white matter of schizophrenic subjects , 1996, Schizophrenia Research.

[80]  Y. Kawasawa,et al.  Selective depletion of molecularly defined cortical interneurons in human holoprosencephaly with severe striatal hypoplasia. , 2009, Cerebral cortex.

[81]  A. Kriegstein,et al.  Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases , 2004, Nature Neuroscience.

[82]  D. Steindler,et al.  Reeler mutant mouse: maintenance of appropriate and reciprocal connections in the cerebral cortex and thalamus , 1976, Brain Research.

[83]  M. Jacobson,et al.  Embryonic vertebrate central nervous system: Revised terminology , 1970 .

[84]  G. Miyoshi,et al.  GABAergic interneuron lineages selectively sort into specific cortical layers during early postnatal development. , 2011, Cerebral cortex.

[85]  A. Kriegstein,et al.  LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages , 2005, The Journal of cell biology.

[86]  P. Rakic,et al.  Origin of GABAergic neurons in the human neocortex , 2002, Nature.

[87]  Gord Fishell,et al.  The genetics of early telencephalon patterning: some assembly required , 2008, Nature Reviews Neuroscience.

[88]  M. Rosenfeld,et al.  Transcriptional Regulation of Cortical Neuron Migration by POU Domain Factors , 2002, Science.

[89]  O. Marín,et al.  Cxcr7 Controls Neuronal Migration by Regulating Chemokine Responsiveness , 2011, Neuron.

[90]  J. Rubenstein,et al.  Tbr1 and Fezf2 Regulate Alternate Corticofugal Neuronal Identities during Neocortical Development , 2011, The Journal of Neuroscience.

[91]  H. T. Ghashghaei,et al.  Radial Glial Dependent and Independent Dynamics of Interneuronal Migration in the Developing Cerebral Cortex , 2007, PloS one.

[92]  D. O'Leary,et al.  Development of projection neuron types, axon pathways, and patterned connections of the mammalian cortex , 1993, Neuron.

[93]  D. Rujescu,et al.  Evidence of statistical epistasis between DISC1, CIT and NDEL1 impacting risk for schizophrenia: biological validation with functional neuroimaging , 2010, Human Genetics.

[94]  F. Guillemot,et al.  COUP-TFI promotes radial migration and proper morphology of callosal projection neurons by repressing Rnd2 expression , 2011, Development.

[95]  E. Grove,et al.  Massive loss of Cajal-Retzius cells does not disrupt neocortical layer order , 2006, Development.

[96]  P. Johnston Review of Development , 2006 .

[97]  F. Guillemot Cell fate specification in the mammalian telencephalon , 2007, Progress in Neurobiology.

[98]  P. Rakić Neurons in Rhesus Monkey Visual Cortex: Systematic Relation between Time of Origin and Eventual Disposition , 1974, Science.

[99]  N. Šestan,et al.  Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[100]  P. Arlotta,et al.  SOX5 Controls the Sequential Generation of Distinct Corticofugal Neuron Subtypes , 2008, Neuron.

[101]  O. Marín,et al.  Neuronal migration mechanisms in development and disease , 2010, Current Opinion in Neurobiology.

[102]  A. Mele,et al.  Nova2 Regulates Neuronal Migration through an RNA Switch in Disabled-1 Signaling , 2010, Neuron.

[103]  G. Miyoshi,et al.  The Requirement of Nkx2-1 in the Temporal Specification of Cortical Interneuron Subtypes , 2008, Neuron.

[104]  Makoto Sato,et al.  Filamin A and FILIP (Filamin A-Interacting Protein) Regulate Cell Polarity and Motility in Neocortical Subventricular and Intermediate Zones during Radial Migration , 2004, The Journal of Neuroscience.

[105]  L. Nguyen,et al.  Molecular layers underlying cytoskeletal remodelling during cortical development , 2010, Trends in Neurosciences.

[106]  E. Chan,et al.  Disruption of GW bodies impairs mammalian RNA interference , 2005, Nature Cell Biology.

[107]  S. Seshadri,et al.  Migration defects by DISC1 knockdown in C57BL/6, 129X1/SvJ, and ICR strains via in utero gene transfer and virus-mediated RNAi. , 2010, Biochemical and biophysical research communications.

[108]  P. Rakic Prenatal genesis of connections subserving ocular dominance in the rhesus monkey , 1976, Nature.

[109]  J. Rubenstein,et al.  CXCR4 and CXCR7 Have Distinct Functions in Regulating Interneuron Migration , 2011, Neuron.

[110]  I. Kostović,et al.  The development of synapses in cerebral cortex of the human fetus. , 1973, Brain research.

[111]  M. Marín‐Padilla,et al.  Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study , 2004, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[112]  Martin S. Taylor,et al.  Disruption of two novel genes by a translocation co-segregating with schizophrenia. , 2000, Human molecular genetics.

[113]  J. Hirschfeld,et al.  Distribution of Group-specific Components (Gc) in the Sera of Native Africans , 1961, Nature.

[114]  N. Zečević,et al.  Dorsal Radial Glial Cells Have the Potential to Generate Cortical Interneurons in Human But Not in Mouse Brain , 2011, The Journal of Neuroscience.

[115]  D. Geschwind,et al.  Autism spectrum disorders: developmental disconnection syndromes , 2007, Current Opinion in Neurobiology.

[116]  Akira Sawa,et al.  Recruitment of PCM1 to the centrosome by the cooperative action of DISC1 and BBS4: a candidate for psychiatric illnesses. , 2008, Archives of general psychiatry.

[117]  Paola Arlotta,et al.  Neuronal Subtype-Specific Genes that Control Corticospinal Motor Neuron Development In Vivo , 2005, Neuron.

[118]  M. Hoshino,et al.  Rab GTPases-Dependent Endocytic Pathways Regulate Neuronal Migration and Maturation through N-Cadherin Trafficking , 2010, Neuron.

[119]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[120]  M. Hoshino,et al.  Molecular Pathways Regulating Cytoskeletal Organization and Morphological Changes in Migrating Neurons , 2007, Developmental Neuroscience.

[121]  J. Rubenstein,et al.  Annual Research Review: Development of the cerebral cortex: implications for neurodevelopmental disorders. , 2011, Journal of child psychology and psychiatry, and allied disciplines.

[122]  I. Cobos,et al.  Dlx Transcription Factors Promote Migration through Repression of Axon and Dendrite Growth , 2007, Neuron.

[123]  B. Cubelos,et al.  Cux1 and Cux2 Regulate Dendritic Branching, Spine Morphology, and Synapses of the Upper Layer Neurons of the Cortex , 2010, Neuron.

[124]  E. Jones,et al.  Neurotransmitters in the cerebral cortex. , 1986, Journal of neurosurgery.

[125]  C. Shatz,et al.  The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. , 1994, Annual review of neuroscience.

[126]  S. Anderson,et al.  Postmitotic Nkx2-1 Controls the Migration of Telencephalic Interneurons by Direct Repression of Guidance Receptors , 2008, Neuron.

[127]  K. Herrup,et al.  Cyclin-Dependent Kinase 5-Deficient Mice Demonstrate Novel Developmental Arrest in Cerebral Cortex , 1998, The Journal of Neuroscience.

[128]  S. Nelson,et al.  Molecular taxonomy of major neuronal classes in the adult mouse forebrain , 2006, Nature Neuroscience.

[129]  D. Geschwind,et al.  Absence of CNTNAP2 Leads to Epilepsy, Neuronal Migration Abnormalities, and Core Autism-Related Deficits , 2011, Cell.

[130]  V. Perry,et al.  Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene , 2001, Nature Neuroscience.

[131]  Gregory M. Cooper,et al.  A Copy Number Variation Morbidity Map of Developmental Delay , 2011, Nature Genetics.

[132]  S. Anderson,et al.  NKX2.1 specifies cortical interneuron fate by activating Lhx6 , 2008, Development.

[133]  S. Mcconnell,et al.  Satb2 Regulates Callosal Projection Neuron Identity in the Developing Cerebral Cortex , 2008, Neuron.

[134]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[135]  A. Goffinet,et al.  Reelin and brain development , 2003, Nature Reviews Neuroscience.

[136]  D. O'Leary,et al.  Growth and targeting of subplate axons and establishment of major cortical pathways [published erratum appears in J Neurosci 1993 Mar;13(3):following table of contents] , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[137]  H. Faras,et al.  Autism spectrum disorders , 2010, Annals of Saudi medicine.

[138]  S. Mcconnell,et al.  Restriction of Late Cerebral Cortical Progenitors to an Upper-Layer Fate , 1996, Neuron.

[139]  D. Pinto,et al.  Structural variation of chromosomes in autism spectrum disorder. , 2008, American journal of human genetics.

[140]  J. Rosenfeld,et al.  Copy number variations associated with autism spectrum disorders contribute to a spectrum of neurodevelopmental disorders , 2010, Genetics in Medicine.

[141]  V. Tarabykin,et al.  Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. , 2001, Development.

[142]  L. Nguyen,et al.  Phosphorylation of SCG10/stathmin-2 determines multipolar stage exit and neuronal migration rate , 2011, Nature Neuroscience.

[143]  P. Rakic,et al.  Four-Dimensional Migratory Coordinates of GABAergic Interneurons in the Developing Mouse Cortex , 2003, The Journal of Neuroscience.