Network intrusion detection with a novel hierarchy of distances between embeddings of hash IP addresses

[1]  Włodzisław Duch,et al.  SYMBOLIC FEATURES IN NEURAL NETWORKS , 2000 .

[2]  Kilian Q. Weinberger,et al.  Feature hashing for large scale multitask learning , 2009, ICML '09.

[3]  Daniel S. Berman,et al.  A Survey of Deep Learning Methods for Cyber Security , 2019, Inf..

[4]  Hazem M. Soliman,et al.  A Graph Neural Network Approach for Scalable and Dynamic IP Similarity in Enterprise Networks , 2020, ArXiv.

[5]  Scott E. Coull,et al.  On Measuring the Similarity of Network Hosts: Pitfalls, New Metrics, and Empirical Analyses , 2011, NDSS.

[6]  S. Snyder,et al.  Novel neural modulators. , 2003, Annual review of neuroscience.

[7]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[8]  Jagath Samarabandu,et al.  Deep learning methods in network intrusion detection: A survey and an objective comparison , 2020, J. Netw. Comput. Appl..

[9]  H. Řezanková,et al.  Dimensionality Reduction of Categorical Data: Comparison of HCA and CATPCA Approaches , 2015 .

[10]  Jing Wang,et al.  Botnet Detection Based on Anomaly and Community Detection , 2017, IEEE Transactions on Control of Network Systems.

[11]  Omer Levy,et al.  word2vec Explained: deriving Mikolov et al.'s negative-sampling word-embedding method , 2014, ArXiv.

[12]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[13]  Kedar Potdar,et al.  A Comparative Study of Categorical Variable Encoding Techniques for Neural Network Classifiers , 2017 .

[14]  Brett J. Borghetti,et al.  A Survey of Distance and Similarity Measures Used Within Network Intrusion Anomaly Detection , 2015, IEEE Communications Surveys & Tutorials.

[15]  Giorgio Visani,et al.  Metrics for Multi-Class Classification: an Overview , 2020, ArXiv.

[16]  Mei-Ling Shyu,et al.  Handling nominal features in anomaly intrusion detection problems , 2005, 15th International Workshop on Research Issues in Data Engineering: Stream Data Mining and Applications (RIDE-SDMA'05).

[17]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[18]  Gilles Louppe,et al.  Understanding variable importances in forests of randomized trees , 2013, NIPS.

[19]  Ting Chen,et al.  Deep Hash Embedding for Large-Vocab Categorical Feature Representations , 2020, ArXiv.

[20]  Ole Winther,et al.  Hash Embeddings for Efficient Word Representations , 2017, NIPS.

[21]  Hong Jia,et al.  A New Distance Metric for Unsupervised Learning of Categorical Data , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[22]  Jian Liu,et al.  Towards Network Anomaly Detection Using Graph Embedding , 2020, ICCS.

[23]  Douwe Kiela,et al.  No Training Required: Exploring Random Encoders for Sentence Classification , 2019, ICLR.

[24]  George Bebis,et al.  A supervised machine learning approach to classify host roles on line using sFlow , 2013, HPPN '13.

[25]  Klaus Julisch,et al.  Clustering intrusion detection alarms to support root cause analysis , 2003, TSEC.

[26]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[27]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[28]  Andreas Hotho,et al.  IP2Vec: Learning Similarities Between IP Addresses , 2017, 2017 IEEE International Conference on Data Mining Workshops (ICDMW).

[29]  Elena Deza,et al.  Encyclopedia of Distances , 2014 .

[30]  João Paulo Papa,et al.  Internet of Things: A survey on machine learning-based intrusion detection approaches , 2019, Comput. Networks.

[31]  Norbert Jankowski,et al.  Transformations of Symbolic Data for Continuous Data Oriented Models , 2003, ICANN.

[32]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[33]  Gael Varoquaux,et al.  Encoding High-Cardinality String Categorical Variables , 2019, IEEE Transactions on Knowledge and Data Engineering.

[34]  Matthew J. Davis Contrast Coding in Multiple Regression Analysis: Strengths, Weaknesses, and Utility of Popular Coding Structures , 2021, Journal of Data Science.

[35]  Ali A. Ghorbani,et al.  Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization , 2018, ICISSP.

[36]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[37]  Hao Jiang,et al.  IP geolocation estimation using neural networks with stable landmarks , 2016, 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[38]  Pavlos Protopapas,et al.  Optimizing the Multiclass F-Measure via Biconcave Programming , 2016, 2016 IEEE 16th International Conference on Data Mining (ICDM).

[39]  Raouf Boutaba,et al.  A comprehensive survey on machine learning for networking: evolution, applications and research opportunities , 2018, Journal of Internet Services and Applications.

[40]  Ahmad Jakalan,et al.  Social relationship discovery of IP addresses in the managed IP networks by observing traffic at network boundary , 2016, Comput. Networks.

[41]  Baris Coskun,et al.  Detecting hidden enemy lines in IP address space , 2013, NSPW '13.

[42]  Ali A. Ghorbani,et al.  Developing Realistic Distributed Denial of Service (DDoS) Attack Dataset and Taxonomy , 2019, 2019 International Carnahan Conference on Security Technology (ICCST).

[43]  Xin Wang,et al.  Machine Learning for Networking: Workflow, Advances and Opportunities , 2017, IEEE Network.

[44]  Geoff Salmon,et al.  On the Detection of Persistent Attacks using Alert Graphs and Event Feature Embeddings , 2020, NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium.

[45]  Burton H. Bloom,et al.  Space/time trade-offs in hash coding with allowable errors , 1970, CACM.

[46]  Daniele Micci-Barreca,et al.  A preprocessing scheme for high-cardinality categorical attributes in classification and prediction problems , 2001, SKDD.

[47]  Cheng Guo,et al.  Entity Embeddings of Categorical Variables , 2016, ArXiv.

[48]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.