Spectrum for quantum duffing oscillator and small‐divisor equation with large‐variable coefficient

By establishing a new estimate of the solutions for the small-divisor equation with large variable coefficients and using the KAM technique, we prove a reduction theorem that entails the pure point nature of the Floquet spectrum of the quantum Duffing oscillator with a small perturbation temporal quasi-periodic with nonresonant frequencies. © 2010 Wiley Periodicals, Inc.

[1]  V. Peano,et al.  Dynamics of the quantum Duffing oscillator in the driving induced bistable regime , 2005, cond-mat/0505671.

[2]  H. Jauslin,et al.  Floquet spectrum for two-level systems in quasiperiodic time-dependent fields , 1992 .

[3]  G. Nenciu Floquet operators without absolutely continuous spectrum , 1993 .

[4]  Dario Bambusi,et al.  Time Quasi-Periodic Unbounded Perturbations¶of Schrödinger Operators and KAM Methods , 2000 .

[5]  M. Vittot,et al.  Perturbation of an eigenvalue from a dense point spectrum: a general Floquet Hamiltonian , 1997, physics/9712006.

[6]  J. Pöschel,et al.  A KAM-theorem for some nonlinear partial differential equations , 1996 .

[7]  S. B. Kuksin On small-denominators equations with large variable coefficients , 1997 .

[8]  P. Šťovíček,et al.  Floquet Hamiltonians with pure point spectrum , 1996 .

[9]  W.-M. Wang,et al.  Pure Point Spectrum of the Floquet Hamiltonian for the Quantum Harmonic Oscillator Under Time Quasi-Periodic Perturbations , 2007, 0805.3764.

[10]  M. Combescure The quantum stability problem for time-periodic perturbations of the harmonic oscillator , 1987 .

[11]  A. Joye Absence of absolutely continuous spectrum of Floquet operators , 1994 .

[12]  H. Eliasson,et al.  Infinite Töplitz–Lipschitz matrices and operators , 2008 .

[13]  Barry Simon,et al.  Schrödinger operators in the twentieth century , 2000 .

[14]  J. Pöschel,et al.  Quasi-periodic solutions for a nonlinear wave equation , 1996 .

[15]  J. S. Howland Floquet operators with singular spectrum. II , 1989 .

[16]  S. Kuksin,et al.  On Reducibility of Schrödinger Equations with Quasiperiodic in Time Potentials , 2009 .