A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds

In this paper, a subgradient-type method for solving nonsmooth multiobjective optimization problems on Riemannian manifolds is proposed and analyzed. This method extends, to the multicriteria case, the classical subgradient method for real-valued minimization proposed by Ferreira and Oliveira (J. Optim. Theory Appl. 97:93–104, 1998). The sequence generated by the method converges to a Pareto optimal point of the problem, provided that the sectional curvature of the manifold is nonnegative and the multicriteria function is convex.

[1]  Alfredo N. Iusem,et al.  A Projected Gradient Method for Vector Optimization Problems , 2004, Comput. Optim. Appl..

[2]  C. Tammer,et al.  Theory of Vector Optimization , 2003 .

[3]  Daniel Azagra Rueda,et al.  Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds , 2005 .

[4]  D. Bertsekas,et al.  Incremental subgradient methods for nondifferentiable optimization , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[5]  Yu. S. Ledyaev,et al.  Nonsmooth analysis on smooth manifolds , 2007 .

[6]  Chong Li,et al.  Existence of solutions for variational inequalities on Riemannian manifolds , 2009 .

[7]  Tamás Rapcsák,et al.  Local Convexity on Smooth Manifolds , 2005 .

[8]  Jinhua Wang,et al.  Uniqueness of the singular points of vector fields on Riemannian manifolds under the gamma-condition , 2006, J. Complex..

[9]  Paulo Roberto Oliveira,et al.  Proximal point method for a special class of nonconvex functions on Hadamard manifolds , 2008, 0812.2201.

[10]  Chong Li,et al.  Newton's method on Riemannian manifolds: Smale's point estimate theory under the γ-condition , 2006 .

[11]  Chong Li,et al.  Newton's method for sections on Riemannian manifolds: Generalized covariant alpha-theory , 2008, J. Complex..

[12]  Chong Li,et al.  Newton's method for sections on Riemannian manifolds , 2008 .

[13]  I. Holopainen Riemannian Geometry , 1927, Nature.

[14]  Orizon Pereira Ferreira,et al.  Singularities of Monotone Vector Fields and an Extragradient-type Algorithm , 2005, J. Glob. Optim..

[15]  Orizon P. Ferreira,et al.  Monotone point-to-set vector fields. , 2000 .

[16]  Nan-Jing Huang,et al.  Korpelevich’s method for variational inequality problems on Hadamard manifolds , 2012, J. Glob. Optim..

[17]  Alfredo N. Iusem,et al.  On the projected subgradient method for nonsmooth convex optimization in a Hilbert space , 1998, Math. Program..

[18]  C. Udriste,et al.  Convex Functions on Riemannian Manifolds , 1994 .

[19]  S. Németh Variational inequalities on Hadamard manifolds , 2003 .

[20]  Orizon Pereira Ferreira,et al.  Local convergence of Newton's method under majorant condition , 2010, J. Comput. Appl. Math..

[21]  S. Yau Mathematics and its applications , 2002 .

[22]  Orizon Pereira Ferreira,et al.  Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds , 2012, Journal of Optimization Theory and Applications.

[23]  Orizon Pereira Ferreira,et al.  Kantorovich's Theorem on Newton's Method in Riemannian Manifolds , 2002, J. Complex..

[24]  Chong Li,et al.  Gauss–Newton method for convex composite optimizations on Riemannian manifolds , 2012, J. Glob. Optim..

[25]  O. P. Ferreira,et al.  Subgradient Algorithm on Riemannian Manifolds , 1998 .

[26]  Felipe Alvarez,et al.  A Unifying Local Convergence Result for Newton's Method in Riemannian Manifolds , 2008, Found. Comput. Math..

[27]  Kaisa Miettinen,et al.  An interactive method for nonsmooth multiobjective optimization with an application to optimal control , 1993 .

[28]  D. J. White,et al.  A Bibliography on the Applications of Mathematical Programming Multiple-objective Methods , 1990 .

[29]  Chong Li,et al.  Mathematics 4-1-2009 Weak Sharp Minima on Riemannian Manifolds , 2014 .

[30]  Alfredo N. Iusem,et al.  Proximal Methods in Vector Optimization , 2005, SIAM J. Optim..

[31]  M. R. Pouryayevali,et al.  Invariant monotone vector fields on Riemannian manifolds , 2009 .

[32]  Boris Polyak Minimization of unsmooth functionals , 1969 .

[33]  J. H. Wang,et al.  Monotone and Accretive Vector Fields on Riemannian Manifolds , 2010 .

[34]  Jörg Fliege,et al.  Newton's Method for Multiobjective Optimization , 2009, SIAM J. Optim..

[35]  P. R. Oliveira,et al.  Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds , 2009 .

[36]  O. P. Ferreira Proximal subgradient and a characterization of Lipschitz function on Riemannian manifolds , 2006 .

[37]  Chong Li,et al.  EXTENDED NEWTON’S METHOD FOR MAPPINGS ON RIEMANNIAN MANIFOLDS WITH VALUES IN A CONE , 2009 .

[38]  A Singular Riemannian Barrier Method for Constrained Minimization , 2004 .

[39]  Jefferson G. Melo,et al.  Subgradient Method for Convex Feasibility on Riemannian Manifolds , 2011, Journal of Optimization Theory and Applications.

[40]  B. Svaiter,et al.  A steepest descent method for vector optimization , 2005 .

[41]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[42]  João X. da Cruz Neto,et al.  Convex- and Monotone-Transformable Mathematical Programming Problems and a Proximal-Like Point Method , 2006, J. Glob. Optim..

[43]  J. H. Wang,et al.  Convergence of Newton’s Method for Sections on Riemannian Manifolds , 2011, J. Optim. Theory Appl..

[44]  Jörg Fliege,et al.  Steepest descent methods for multicriteria optimization , 2000, Math. Methods Oper. Res..

[45]  Thomas Hanne,et al.  On the Development and Future Aspects of Vector Optimization and MCDM , 1997 .

[46]  Chong Li,et al.  Monotone vector fields and the proximal point algorithm on Hadamard manifolds , 2009 .

[47]  P. Roberto Oliveira,et al.  Steepest descent method with a generalized Armijo search for quasiconvex functions on Riemannian manifolds , 2008 .

[48]  Alfredo N. Iusem,et al.  A primal dual modified subgradient algorithm with sharp Lagrangian , 2010, J. Glob. Optim..