Fundamental Properties of Novel Design Microstrip Line Type of Liquid Crystal Phase Shifter in Microwave Region

A planar-type electrically tunable phase shifter is demonstrated in the microwave region by using liquid crystal (LC) materials. A novel planar waveguide structure based on the microstrip line, which can convert the normal microstrip line to the inverted one, is designed. The new conversion circuit enables us to introduce LC materials on the microstrip line as easily as in the case of using the coplanar waveguide type of liquid crystal phase shifters. Larger phase shifting properties are confirmed empirically up to approximately 10 GHz with the application of a driving voltage of less than 10 V.

[1]  Daniel Dolfi,et al.  Liquid crystal microwave phase shifter , 1993 .

[2]  Ryotaro Ozaki,et al.  Microwave Variable Phase Shifter of Coplanar Waveguide Using Ferroelectric Liquid Crystal , 2008 .

[3]  N. Vieweg,et al.  Molecular properties of liquid crystals in the terahertz frequency range. , 2010, Optics express.

[4]  T. Nozokido,et al.  Refractive index of nematic liquid crystals in the submillimeter wave region. , 1997, Applied optics.

[5]  Michinori Honma,et al.  Basic Performance of Refractive Index Measurement Method for LC Materials in Super High Frequency Region by Using Coplanar Wave Guide , 2011 .

[6]  Rolf Jakoby,et al.  Terahertz time-domain spectroscopy of nematic liquid crystals , 2010, Photonics Europe.

[7]  Dariush Mirshekar-Syahkal,et al.  Meander line millimetre-wave liquid crystal based phase shifter , 2010 .

[8]  Electrically Controlled Millimeter-Wave Focusing Properties of Liquid Crystal Lens , 2002 .

[9]  M. Honma,et al.  Operational Mode of Millimeter-Wave Phase Shifter Using Liquid Crystal Materials with Coplanar Waveguide , 2007 .

[10]  R. Ito,et al.  Improvement of Phase-Shifting Properties in Coplanar Waveguide-Type Liquid Crystal Millimeter-Wave Phase Shifter by Introducing a Resonant Phenomenon , 2008 .

[11]  T. Kuki,et al.  Millimeter-wave beam former using liquid crystal , 2004, 34th European Microwave Conference, 2004..

[12]  D. Mirshekar-Syahkal,et al.  Novel Wideband Transition Between Coplanar Waveguide and Microstrip Line , 2010, IEEE Transactions on Microwave Theory and Techniques.

[13]  Tadakuni Murai,et al.  A millimeter-wave quasi-optical grid phase shifter using liquid crystal , 2010, IEICE Electron. Express.

[14]  T. Kamei,et al.  Increasing the speed of microstrip-line-type polymer-dispersed liquid-crystal loaded variable phase shifter , 2005, IEEE Transactions on Microwave Theory and Techniques.

[15]  Ci-Ling Pan,et al.  Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range , 2008 .

[16]  Michinori Honma,et al.  Simple method for the determination of refractive indices and loss parameters for liquid-crystal materials in the millimeter-wave region. , 2005, Applied optics.

[17]  F. Fernández,et al.  Measurement of Dielectric Properties of Nematic Liquid Crystals at Millimeter Wavelength , 2010, IEEE Transactions on Microwave Theory and Techniques.

[18]  Toshiaki Nose,et al.  Millimeter-Wave Transmission Properties of Nematic Liquid-Crystal Cells with a Grating-Patterned Electrode Structure , 2000 .