Multiscale modeling of solute diffusion in triblock copolymer membranes.

We develop a multiscale simulation model for diffusion of solutes through porous triblock copolymer membranes. The approach combines two techniques: self-consistent field theory (SCFT) to predict the structure of the self-assembled, solvated membrane and on-lattice kinetic Monte Carlo (kMC) simulations to model diffusion of solutes. Solvation is simulated in SCFT by constraining the glassy membrane matrix while relaxing the brush-like membrane pore coating against the solvent. The kMC simulations capture the resulting solute spatial distribution and concentration-dependent local diffusivity in the polymer-coated pores; we parameterize the latter using particle-based simulations. We apply our approach to simulate solute diffusion through nonequilibrium morphologies of a model triblock copolymer, and we correlate diffusivity with structural descriptors of the morphologies. We also compare the model's predictions to alternative approaches based on simple lattice random walks and find our multiscale model to be more robust and systematic to parameterize. Our multiscale modeling approach is general and can be readily extended in the future to other chemistries, morphologies, and models for the local solute diffusivity and interactions with the membrane.

[1]  V. Ganesan,et al.  A Multiscale Simulation Study of Influence of Morphology on Ion Transport in Block Copolymeric Ionic Liquids , 2021 .

[2]  M. Stamatakis,et al.  A Novel Modeling Approach to Stochastically Evaluate the Impact of Pore Network Geometry, Chemistry and Topology on Fluid Transport , 2020, Transport in Porous Media.

[3]  B. Freeman,et al.  Designing Solute-Tailored Selectivity in Membranes: Perspectives for Water Reuse and Resource Recovery. , 2020, ACS macro letters.

[4]  B. Freeman,et al.  Can Self-Assembly Address the Permeability/Selectivity Trade-Offs in Polymer Membranes? , 2020 .

[5]  Thomas M Truskett,et al.  Transport Mechanisms Underlying Ionic Conductivity in Nanoparticle-Based Single-Ion Electrolytes. , 2020, The journal of physical chemistry letters.

[6]  Michael P. Howard,et al.  Connecting Solute Diffusion to Morphology in Triblock Copolymer Membranes , 2020 .

[7]  Tianyu Liu,et al.  Thermally Stable and Mechanically Strong Mesoporous Films of Poly(ether imide)-Based Triblock Copolymers , 2020 .

[8]  Michael P. Howard,et al.  Influence of pore morphology on the diffusion of water in triblock copolymer membranes. , 2020, The Journal of chemical physics.

[9]  M. Stamatakis,et al.  Quantifying Pore Width Effects on Diffusivity via a Novel 3D Stochastic Approach with Input from Atomistic Molecular Dynamics Simulations. , 2019, Journal of chemical theory and computation.

[10]  Thomas M Truskett,et al.  Influence of morphology of colloidal nanoparticle gels on ion transport and rheology. , 2019, The Journal of chemical physics.

[11]  Daniel M. Tartakovsky,et al.  Diffusion in Porous Media: Phenomena and Mechanisms , 2019, Transport in Porous Media.

[12]  Ludwig Schneider,et al.  Engineering Scale Simulation of Nonequilibrium Network Phases for Battery Electrolytes , 2019, Macromolecules.

[13]  U. Gerken,et al.  Non-invasive study of the three-dimensional structure of nanoporous triblock terpolymer membranes. , 2018, Soft matter.

[14]  Christoph H. Arns,et al.  Porous Media Characterization Using Minkowski Functionals: Theories, Applications and Future Directions , 2018, Transport in Porous Media.

[15]  Kuan-Hsuan Shen,et al.  Diffusion in Lamellae, Cylinders, and Double Gyroid Block Copolymer Nanostructures. , 2018, ACS macro letters.

[16]  David S. Corti,et al.  Fit-for-purpose block polymer membranes molecularly engineered for water treatment , 2018, npj Clean Water.

[17]  F. Escobedo,et al.  Correlation between Ionic Mobility and Microstructure in Block Copolymers. A Coarse-Grained Modeling Study , 2018, Macromolecules.

[18]  Bryan W. Boudouris,et al.  Block Polymer Membranes Functionalized with Nanoconfined Polyelectrolyte Brushes Achieve Sub-Nanometer Selectivity. , 2017, ACS macro letters.

[19]  Michael P. Howard,et al.  Vapour–liquid phase equilibrium and surface tension of fully flexible Lennard–Jones chains , 2017 .

[20]  Michael P. Howard,et al.  Axial dispersion of Brownian colloids in microfluidic channels , 2016 .

[21]  S. Nunes Block Copolymer Membranes for Aqueous Solution Applications , 2016 .

[22]  Ulrich Wiesner,et al.  Tailoring Pore Size of Graded Mesoporous Block Copolymer Membranes: Moving from Ultrafiltration toward Nanofiltration , 2015 .

[23]  U. Toussaint,et al.  First-passage kinetic Monte Carlo on lattices: Hydrogen transport in lattices with traps , 2015 .

[24]  G. Fredrickson,et al.  A multi-species exchange model for fully fluctuating polymer field theory simulations. , 2014, The Journal of chemical physics.

[25]  A. Fery,et al.  Topological Paths and Transient Morphologies during Formation of Mesoporous Block Copolymer Membranes , 2014 .

[26]  Sharon C. Glotzer,et al.  HOOMD-blue: A Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations , 2013 .

[27]  M. Morris,et al.  Solvent Vapor Annealing of Block Polymer Thin Films , 2013 .

[28]  V. Ruiz Barlett,et al.  Monte Carlo simulation with fixed steplength for diffusion processes in nonhomogeneous media , 2012, J. Comput. Phys..

[29]  M. Buonomenna,et al.  Some approaches for high performance polymer based membranes for gas separation: block copolymers, carbon molecular sieves and mixed matrix membranes , 2012 .

[30]  Yong Wang,et al.  Swelling-induced mesoporous block copolymer membranes with intrinsically active surfaces for size-selective separation , 2012 .

[31]  U. Wiesner,et al.  Solution Small-Angle X-ray Scattering as a Screening and Predictive Tool in the Fabrication of Asymmetric Block Copolymer Membranes. , 2012, ACS macro letters.

[32]  M. Elimelech,et al.  Tuning structure and properties of graded triblock terpolymer-based mesoporous and hybrid films. , 2011, Nano letters.

[33]  V. Ruiz Barlett,et al.  Comparison between fixed and Gaussian steplength in Monte Carlo simulations for diffusion processes , 2011, J. Comput. Phys..

[34]  Sharon C. Glotzer,et al.  Pseudo-random number generation for Brownian Dynamics and Dissipative Particle Dynamics simulations on GPU devices , 2011, J. Comput. Phys..

[35]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[36]  W. Phillip,et al.  Self-assembled block copolymer thin films as water filtration membranes. , 2010, ACS applied materials & interfaces.

[37]  V. Abetz,et al.  Asymmetric superstructure formed in a block copolymer via phase separation. , 2007, Nature materials.

[38]  Jian Qin,et al.  SCFT Study of Nonfrustrated ABC Triblock Copolymer Melts , 2007 .

[39]  Abhijit Chatterjee,et al.  An overview of spatial microscopic and accelerated kinetic Monte Carlo methods , 2007 .

[40]  Eric W. Cochran,et al.  Stability of the Gyroid Phase in Diblock Copolymers at Strong Segregation , 2006 .

[41]  M. Hillmyer,et al.  Nanoporous Polystyrene Containing Hydrophilic Pores from an ABC Triblock Copolymer Precursor , 2005 .

[42]  Edward D Harder,et al.  On the Calculation of Diffusion Coefficients in Confined Fluids and Interfaces with an Application to the Liquid-Vapor Interface of Water † , 2003, physics/0311084.

[43]  G. Kalosakas,et al.  Improved numerical algorithm for exploring block copolymer mesophases , 2002 .

[44]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[45]  Kristel Michielsen,et al.  Integral-geometry morphological image analysis , 2001 .

[46]  Nikos Hadjichristidis,et al.  Mechanical Properties and Deformation Behavior of the Double Gyroid Phase in Unoriented Thermoplastic Elastomers , 1999 .

[47]  L. Colombo,et al.  A lattice kinetic Monte Carlo code for the description of vacancy diffusion and self-organization in Si , 1999 .

[48]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[49]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[50]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[51]  F. Bates,et al.  Polymer-Polymer Phase Behavior , 1991, Science.

[52]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[53]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[54]  P. Meares,et al.  The diffusion of electrolytes in a cation-exchange resin membrane I. Theoretical , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[55]  V. Abetz Isoporous block copolymer membranes. , 2015, Macromolecular rapid communications.

[56]  V. Abetz,et al.  Tailored Pore Sizes in Integral Asymmetric Membranes Formed by Blends of Block Copolymers , 2015, Advanced materials.

[57]  T. C. B. McLeish,et al.  Polymer Physics , 2009, Encyclopedia of Complexity and Systems Science.

[58]  Glenn H. Fredrickson,et al.  Numerical Solution of Polymer Self-Consistent Field Theory , 2004, Multiscale Model. Simul..

[59]  G. Fredrickson,et al.  Block copolymer thermodynamics: theory and experiment. , 1990, Annual review of physical chemistry.