ROBUST DETERMINATION OF THE MAJOR MERGER FRACTION AT Z = 0.6 IN THE GROTH STRIP

We measure the fraction of galaxies undergoing disk-disk major mergers (∫^mph_m) at intermediate redshifts ((0.35 ≤ z < 0.85) by studying the asymmetry index A of galaxy images. Results are provided for B- and K_s-band absolute magnitude selected samples from the Groth strip in the galaxy origins and young assembly photometric survey. Three sources of systematic error are carefully addressed and quantified. The effects of the large errors in the photometric redshifts and asymmetry indices are corrected with maximum-likelihood techniques. Biases linked to the redshift degradation of the morphological information in the images are treated by measuring asymmetries on images artificially redshifted to a reference redshift of z_d = 0.75. Morphological K-corrections are further constrained by remaining within redshifts where the images sample redward of 4000 angstrom. We find that: (1) our data allow for a robust merger fraction to be provided for a single redshift bin, which we center at z = 0.6. (2) Merger fractions at that z have lower values than previous determinations: ∫_m^mph = 0.045^-0.011_+0.014 for M_B ≤ -20 galaxies, and f_m^mph = 0.031(-0.009)(+0.013) for M(Ks) <= - 23.5 galaxies. And, (3) failure to address the effects of the large observational errors leads to overestimating f_m^mph by factors of 10%-60%. Combining our results with those on other B-band selected samples, and parameterizing the merger fraction evolution as ∫_m^mph (z) = ∫_m^mph (0)(1 + z)^m, we obtain that m = 2.9 ± 0.8, and ∫_m^mph (0) = 0.012 ± 0.004. For an assumed merger timescale between 0.35 0.6 Gyr, these values imply that only 20%-35% of present-day M_B ≤ -20 galaxies have undergone a disk-disk major merger since z ∽ 1. Assuming a K_s -band mass-to- light ratio not varying with luminosity, we infer that the merger rate of galaxies with stellarmass M(star) greater than or similar to 3.5 x 10^10 M_☉ is R_m = 1.6_-0.6^+0.9 x 10^-4 Mpc^-3 Gyr^-1 at z = 0.6. When we compare with previous studies at similar redshifts, we find that the merger rate decreases when mass increases.

[1]  Joel R. Primack,et al.  Formation of galaxies and large-scale structure with cold dark matter , 1984, Nature.

[2]  R. Stern,et al.  Extreme-ultraviolet emission from cool star outer atmospheres. , 1985 .

[3]  G. Neugebauer,et al.  Ultraluminous infrared galaxies and the origin of quasars , 1988 .

[4]  New "Einstein Cross" Gravitational Lens Candidates in Hubble Space Telescope WFPC2 Survey Images , 1995, astro-ph/9508131.

[5]  N. R. Tanvir,et al.  Galaxy morphology to I = 25 mag in the Hubble Deep Field , 1996 .

[6]  K. Ratnatunga,et al.  Disk and Bulge Morphology of WFPC2 Galaxies: The HUBBLE SPACE TELESCOPE Medium Deep Survey Database , 1999 .

[7]  Matthew A. Bershady,et al.  The asymmetry of galaxies: physical morphology for nearby and high redshift galaxies , 1999 .

[8]  J. Brinchmann,et al.  Hubble Space Telescope imaging of the CFRS and LDSS redshift surveys—IV. Influence of mergers in the evolution of faint field galaxies from z∼1 , 1999, astro-ph/9909211.

[9]  New Techniques for Relating Dynamically Close Galaxy Pairs to Merger and Accretion Rates: Application to the Second Southern Sky Redshift Survey , 2000, astro-ph/0001364.

[10]  Comparing Galaxy Morphology at Ultraviolet and Optical Wavelengths , 2000, astro-ph/0002111.

[11]  Y. Shioya,et al.  Photometric Evolution of Dusty Starburst Mergers: On the Nature of Ultraluminous Infrared Galaxies , 2000, astro-ph/0012365.

[12]  E. Bell,et al.  Stellar mass-to-light ratios and the Tully-Fisher relation , 2000, astro-ph/0011493.

[13]  The origin of the density distribution of disc galaxies: a new problem for the standard model of disc formation , 2001, astro-ph/0107195.

[14]  Dynamically close galaxy pairs and merger rate evolution in the cnoc2 redshift survey , 2001, astro-ph/0109428.

[15]  M. Steinmetz,et al.  Simulations of Galaxy Formation in a Λ Cold Dark Matter Universe. I. Dynamical and Photometric Properties of a Simulated Disk Galaxy , 2002, astro-ph/0211331.

[16]  N. Vogt,et al.  The DEEP Groth Strip Survey. II. Hubble Space Telescope Structural Parameters of Galaxies in the Groth Strip , 2002, astro-ph/0205025.

[17]  Christopher J. Conselice,et al.  The Relationship between Stellar Light Distributions of Galaxies and Their Formation Histories , 2003 .

[18]  T. Naab,et al.  Statistical Properties of Collisionless Equal- and Unequal-Mass Merger Remnants of Disk Galaxies , 2001, astro-ph/0110179.

[19]  A. C. González-García,et al.  Mergers between elliptical galaxies and the thickening of the Fundamental Plane , 2003, astro-ph/0304436.

[20]  Casey Papovich,et al.  A Direct Measurement of Major Galaxy Mergers at z 3 , 2003 .

[21]  R. Pelló,et al.  Ks Number Counts in the Groth and Coppi Fields , 2003 .

[22]  P. Madau,et al.  A NEW NONPARAMETRIC APPROACH TO GALAXY MORPHOLOGICAL CLASSIFICATION , 2003, astro-ph/0311352.

[23]  M. Fukugita,et al.  A Slow Merger History of Field Galaxies since z ~ 1 , 2003, astro-ph/0312222.

[24]  R. Bender,et al.  The Munich Near-Infrared Cluster Survey (MUNICS). VI. The Stellar Masses of K-Band-selected Field Galaxies to z ~ 1.2 , 2004 .

[25]  PROBING THE EVOLUTION OF THE GALAXY INTERACTION/MERGER RATE USING COLLISIONAL RING GALAXIES , 2004, astro-ph/0405128.

[26]  Puragra Guhathakurta,et al.  The DEEP2 Galaxy Redshift Survey: Evolution of Close Galaxy Pairs and Major-Merger Rates up to z ~ 1.2 , 2004, astro-ph/0411104.

[27]  E. D’Onghia,et al.  Bulgeless Galaxies and Their Angular Momentum Problem , 2004, astro-ph/0402504.

[28]  Heidelberg,et al.  Nearly 5000 Distant Early-Type Galaxies in COMBO-17: A Red Sequence and Its Evolution since z ~ 1 , 2003, astro-ph/0303394.

[29]  A. Cimatti,et al.  The evolution of the galaxy B-band rest-frame morphology to z ∼ 2: new clues from the K20/GOODS sample , 2004, astro-ph/0411768.

[30]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[31]  Casey Papovich,et al.  The Luminosity, Stellar Mass, and Number Density Evolution of Field Galaxies of Known Morphology from z = 0.5 to 3 , 2004, astro-ph/0405001.

[32]  S. Driver,et al.  The Millennium Galaxy Catalogue: Dynamically Close Pairs of Galaxies and the Global Merger Rate , 2005, astro-ph/0506635.

[33]  Galaxy mergers with various mass ratios: properties of remnants , 2005, astro-ph/0503189.

[34]  M. C. Eliche-Moral,et al.  GOYA Survey: U and B Number Counts in the Groth-Westphal Strip , 2005, astro-ph/0511138.

[35]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[36]  M. Balcells,et al.  Elliptical galaxies from mergers of discs , 2004, astro-ph/0411645.

[37]  S. Khochfar,et al.  Properties of Early-Type, Dry Galaxy Mergers and the Origin of Massive Elliptical Galaxies , 2005, astro-ph/0509667.

[38]  G. Kauffmann,et al.  The formation history of elliptical galaxies , 2005, astro-ph/0509725.

[39]  M. C. Eliche-Moral,et al.  Growth of galactic bulges by mergers. II. Low-density satellites , 2006, astro-ph/0606751.

[40]  Christopher J. Conselice,et al.  Early and Rapid Merging as a Formation Mechanism of Massive Galaxies: Empirical Constraints , 2005, astro-ph/0507146.

[41]  S. Phleps,et al.  The Merger Rate of Massive Galaxies , 2006, astro-ph/0602038.

[42]  G. Helou,et al.  The Role of Galaxy Interactions and Mergers in Star Formation at z ≤ 1.3: Mid-Infrared Properties in the Spitzer First Look Survey , 2007, astro-ph/0701040.

[43]  J. Silk,et al.  Galaxy Mergers at z ≳ 1 in the HUDF: Evidence for a Peak in the Major Merger Rate of Massive Galaxies , 2007, 0712.0416.

[44]  C. Conselice,et al.  The Millennium Galaxy Catalogue: The Connection between Close Pairs and Asymmetry; Implications for the Galaxy Merger Rate , 2007, 0705.2528.

[45]  B. Garilli,et al.  The SWIRE-VVDS-CFHTLS surveys: stellar mass assembly over the last 10 Gyr. Evidence for a major build up of the red sequence between z = 2 and z = 1 , 2007, 0705.2438.

[46]  C. Conselice,et al.  Strong size evolution of the most massive galaxies since z~2 , 2007, 0709.0621.

[47]  M. Salvato,et al.  Evolution of the Frequency of Luminous (≥LV⋆) Close Galaxy Pairs at z < 1.2 in the COSMOS Field , 2007, 0705.2266.

[48]  Dependence of Galaxy Structure on Rest-Frame Wavelength and Galaxy Type* , 2006, astro-ph/0612558.

[49]  Simulating the Cosmos: The Fraction of Merging Galaxies at High Redshift , 2006, astro-ph/0611187.

[50]  J. Frieman,et al.  Photometric Redshift Error Estimators , 2007, 0711.0962.

[51]  M. Balcells,et al.  A Maximum Likelihood Method for Bidimensional Experimental Distributions and Its Application to the Galaxy Merger Fraction , 2008, 0804.1532.

[52]  B. Hsieh,et al.  Pair Analysis of Field Galaxies from the Red-Sequence Cluster Survey , 2008, 0804.1604.

[53]  B. J. Weiner,et al.  accepted to the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE EVOLUTION OF GALAXY MERGERS AND MORPHOLOGY AT Z < 1.2 IN THE EXTENDED GROTH STRIP , 2007 .

[54]  P. Hopkins,et al.  Dissipation and Extra Light in Galactic Nuclei. I. Gas-Rich Merger Remnants , 2008, 0802.0508.

[55]  A. Kembhavi,et al.  Toward a Robust Estimate of the Merger Rate Evolution Using Near-IR Photometry , 2007, Proceedings of the International Astronomical Union.

[56]  Joel R. Primack,et al.  Galaxy merger morphologies and time-scales from simulations of equal-mass gas-rich disc mergers , 2008, 0805.1246.

[57]  UCOLick,et al.  The Redshift Evolution of Wet, Dry, and Mixed Galaxy Mergers from Close Galaxy Pairs in the DEEP2 Galaxy Redshift Survey , 2008, 0802.3004.

[58]  C. Conselice,et al.  The structures of distant galaxies – I. Galaxy structures and the merger rate to z∼ 3 in the Hubble Ultra-Deep Field , 2007, 0711.2333.

[59]  D. Patton,et al.  The Luminosity Dependence of the Galaxy Merger Rate , 2008, 0806.0018.