Historic low‐level phosphorus enrichment in the Great Lakes inferred from biogenic silica accumulation in sediments

Sedimentary biogenic silica (BSi) accumulation was used in conjunction with a hypothetical model of BSi accumulation to show that BSi is a sensitive proxy for low-level phosphorus enrichment in the Great Lakes. We hypothesize that historic nutrient-driven changes in diatom production altered silica biogeochemistry and induced biologically mediated silica depletion (BMSD) and that a record of the underlying mechanism, enhanced diatom production and BSi sedimentation stimulated by anthropogenic phosphorus enrichment, is preserved in the sediment record. Paleolimnological results support three hypotheses based on this model. First, BSi accumulation increased in Lake Superior and Lake Huron at total phosphorus (TP) concentrations (4 and 5 m gT P L 21 or 0.13 and 0.16 mmol L 21 , respectively) too small to induce BMSD and with changes in TP concentration too small to be detected by routine water-column sampling. Second, a peak in BSi accumulation in Lake Michigan resulted from epilimnetic silica depletion that developed rapidly in the 1950s and 1960s when TP averaged 8 m gL 21 (0.26 mmol L

[1]  C. C. Davis EVIDENCE FOR THE EUTROPHICATION OF LAKE ERIE FROM PHYTOPLANKTON RECORDS , 1964 .

[2]  M. Tuchman,et al.  Results from the U.S. EPA's Biological Open Water Surveillance Program of the Laurentian Great Lakes: II. Deep Chlorophyll Maxima , 2001 .

[3]  E. Stoermer,et al.  Eutrophication, Silica Depletion, and Predicted Changes in Algal Quality in Lake Michigan , 1971, Science.

[4]  C. Pilskaln,et al.  Siliceous microfossil distribution in the surficial sediments of Lake Baikal , 1995 .

[5]  Richard P. Barbiero,et al.  Results from the U.S. EPA's Biological Open Water Surveillance Program of the Laurentian Great Lakes: I. Introduction and Phytoplankton Results , 2001 .

[6]  Hunter J. Carrick,et al.  Can Wind-Induced Resuspension of Meroplankton Affect Phytoplankton Dynamics? , 1995, Journal of the North American Benthological Society.

[7]  G. Fahnenstiel,et al.  Subsurface chlorophyll maximum and associated Cyclotella pulse in Lake Superior , 1983 .

[8]  A. Hasler Cultural Eutrophication is Reversible , 1969 .

[9]  E. Stoermer,et al.  Siliceous microfossil succession in recent Lake Huron sediments , 1988, Archiv für Hydrobiologie.

[10]  R. Hecky,et al.  Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment1 , 1988 .

[11]  E. Brown,et al.  History and timing of human impact on Lake Victoria, East Africa , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[12]  R. Lowe,et al.  Response of Lake Michigan Benthic Algae to in situ Enrichment with Si, N, and P , 1988 .

[13]  E. Stoermer,et al.  Siliceous microfossil succession in Lake Michigan , 1990 .

[14]  R. Thomas Sediments of the North American Great Lakes: With 11 figures and 2 tables in the text , 1981 .

[15]  J. Williams,et al.  Availability to Scenedesmus quadricauda of different forms of phosphorus in sedimentary materials from the Great Lakes1 , 1980 .

[16]  M. Twiss POLLUTION OF LAKES AND RIVERS: A PALEOLIMNOLOGICAL PERSPECTIVE , 2008 .

[17]  Richard P. Barbiero,et al.  Evidence of recovery from phosphorus enrichment in Lake Michigan , 2002 .

[18]  D. Rousar Seasonal and spatial changes in primary production and nutrients in Lake Michigan , 1973 .

[19]  C. D. Campbell,et al.  Biogenic silica and phosphorus accumulation in sediments as indices of eutrophication in the Laurentian Great Lakes , 1986, Hydrobiologia.

[20]  E. Stoermer Thirty Years of Diatom Studies on the Great Lakes at the University of Michigan , 1998 .

[21]  E. Stoermer,et al.  Morphological variation of Stephanodiscus niagarae Ehrenb. (Bacillariophyta) in a Lake Ontario sediment core , 1989 .

[22]  E. Stoermer,et al.  Siliceous Microfossil Succession in the Recent History , 1985 .

[23]  G. Fahnenstiel,et al.  Biologically induced calcite and its isotopic composition in Lake Ontario , 1998 .

[24]  S. Chapra Total Phosphorus Model for the Great Lakes , 1977 .

[25]  A. Krause,et al.  The Structure of the Planktonic Food-Web in the St. Lawrence Great Lakes , 1998 .

[26]  W. T. Edmondson,et al.  The Eutrophication Problem , 1972 .

[27]  E. Stoermer,et al.  PHOSPHORUS, SILICA, AND EUTROPHICATION OF LAKE MICHIGAN. , 1970 .

[28]  Colin S. Reynolds,et al.  The ecology of freshwater phytoplankton , 1984 .

[29]  W. Patterson,et al.  Paleoproductivity of eastern Lake Ontario over the past 10,000 years , 2004 .

[30]  M. Brenner,et al.  Sediment records of phosphorus-driven shifts to phytoplanktondominance in shallow Florida lakes , 2002 .

[31]  R. Hecky,et al.  DIATOMS IN ALKALINE, SALINE LAKES: ECOLOGY AND GEOCHEMICAL IMPLICATIONS1 , 1973 .

[32]  E. Stoermer,et al.  Estim.ation of intracellular carbon and silica content of diatoms from natural assemblages using morphometric techniques , 1984 .

[33]  C. Schelske Silica and Nitrate Depletion as Related to Rate of Eutrophication in Lakes Michigan, Huron, and Superior , 1975 .

[34]  F. Gasse,et al.  A High-Resolution Paleoclimate Record Spanning the Past 25,000 Years in Southern East Africa , 2002, Science.

[35]  D. Hodell,et al.  Production, sedimentation, and isotopic composition of organic matter in Lake Ontario , 1998 .

[36]  E. Stoermer,et al.  A Systematic, Quantitative, and Ecological Comparison of Melosira Islandica O. Müll. with M. Granulata (EHR.) Ralfs from the Laurentian Great Lakes , 1981 .

[37]  R. Hecky,et al.  Inputs, Outputs, and Internal Cycling of Silica in a Large, Tropical Lake , 2003 .

[38]  John P. Smol,et al.  Tracking environmental change using lake sediments. Volume 3: Terrestrial, algal, and siliceous indicators. , 2001 .

[39]  C. N. Spencer,et al.  Low-background gamma counting: applications for210Pb dating of sediments , 1994 .

[40]  G. E. Hutchinson,et al.  A treatise on limnology. , 1957 .

[41]  G. E. Hutchinson,et al.  A Treatise on Limnology Vol. II: Introduction to Lake Biology and the Limnoplankton , 1967 .

[42]  D. Schindler Evolution of phosphorus limitation in lakes. , 1977, Science.

[43]  E. Stoermer,et al.  Paleolimnologic evidence of rapid recent change in Lake Erie's trophic status , 1996 .

[44]  T. W. Lewis,et al.  Chemistry of the Offshore Surface Waters of Lake Erie: Pre- and Post-Dreissena Introduction (1983–1993) , 2000 .

[45]  D. Conley Biogenic silica as an estimate of siliceous microfossil abundance in Great Lakes sediments , 1988 .

[46]  T. Nalepa,et al.  Dreissena polymorpha in the Saginaw Bay, Lake Huron Ecosystem: Overview and Perspective , 1995 .

[47]  A. Beeton,et al.  EUTROPHICATION OF THE ST. LAWRENCE GREAT LAKES1 , 1965 .

[48]  C. Schelske,et al.  Recent changes in productivity and climate of Lake Ontario detected by isotopic analysis of sediments , 1991 .

[49]  D. Conley,et al.  Silica and Phosphorus Flux from Sediments: Importance of Internal Recycling in Lake Michigan , 1988 .

[50]  D. Conley,et al.  Differences in silica content between marine and freshwater diatoms , 1989 .

[51]  D. Conley,et al.  Sediment Record of Biogeochemical Responses to Anthropogenic Perturbations of Nutrient Cycles in Lake Ontario , 1988 .

[52]  E. B. Bennett Characteristics of the Thermal Regime of Lake Superior , 1978 .

[53]  E. Stoermer,et al.  Phosphorus enrichment, silica utilization, and biogeochemical silica depletion in the Great Lakes , 1986 .

[54]  T. Johengen,et al.  Temporal and Seasonal Trends in Nutrient Dynamics and Biomass Measures in Lakes Michigan and Ontario in Response to Phosphorus Control , 1994 .

[55]  S. Eisenreich,et al.  Silica in Lake Superior: mass balance considerations and a model for dynamic response to eutrophication , 1979 .

[56]  E. Stoermer,et al.  Diatom resting cell rejuvenation and formation: time course, species records and distribution , 1989 .

[57]  E. Gaiser,et al.  Interpreting the hydrological history of a temporary pond from chemical and microscopic characterization of siliceous microfossils , 2004 .

[58]  G. Fahnenstiel,et al.  Spring isothermal mixing in the Great Lakes: evidence of nutrient limitation and nutrient-light interactions in a suboptimal light environment , 2000 .