Kinetic characterization of the oxidation of catecolamines and related compounds by laccase.

[1]  A. Pawlik,et al.  Laccase Properties, Physiological Functions, and Evolution , 2020, International journal of molecular sciences.

[2]  F. García-Cánovas,et al.  Development of a method to measure laccase activity on methoxyphenolic food ingredients and isomers. , 2019, International journal of biological macromolecules.

[3]  K. Polyakov,et al.  The subatomic resolution study of laccase inhibition by chloride and fluoride anions using single-crystal serial crystallography: insights into the enzymatic reaction mechanism. , 2019, Acta crystallographica. Section D, Structural biology.

[4]  T. Asano,et al.  Mini-review an insect-specific system for terrestrialization: Laccase-mediated cuticle formation. , 2019, Insect biochemistry and molecular biology.

[5]  Chao-Bin Xue,et al.  Molecular identification and enzymatic properties of laccase2 from the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) , 2018, Journal of Integrative Agriculture.

[6]  J. Vontas,et al.  Insect cuticle: a critical determinant of insecticide resistance. , 2018, Current opinion in insect science.

[7]  K. Wakamatsu,et al.  Insect cuticular melanins are distinctly different from those of mammalian epidermal melanins , 2018, Pigment cell & melanoma research.

[8]  F. Francis,et al.  Molecular characterization and gene silencing of Laccase 1 in the grain aphid, Sitobion avenae. , 2018, Archives of insect biochemistry and physiology.

[9]  R. Pathak,et al.  Laccase From White Rot Fungi Having Significant Role in Food, Pharma, and Other Industries , 2018 .

[10]  G. Khaniki,et al.  Biotechnological and Industrial Applications of Laccase: A Review , 2017 .

[11]  M. Sugumaran,et al.  Critical Analysis of the Melanogenic Pathway in Insects and Higher Animals , 2016, International journal of molecular sciences.

[12]  Gang Fu,et al.  PubChem Substance and Compound databases , 2015, Nucleic Acids Res..

[13]  O. Kwon,et al.  Kinetic evidence for the interactive inhibition of laccase from Trametes versicolor by pH and chloride. , 2014, Journal of microbiology and biotechnology.

[14]  K. P. Kepp,et al.  Setting the stage for electron transfer: Molecular basis of ABTS-binding to four laccases from Trametes versicolor at variable pH and protein oxidation state , 2014 .

[15]  U. Ryde,et al.  Theoretical studies of the active-site structure, spectroscopic and thermodynamic properties, and reaction mechanism of multicopper oxidases , 2013 .

[16]  S. Shleev,et al.  On the possibility of uphill intramolecular electron transfer in multicopper oxidases : electrochemical and quantum chemical study of bilirubin oxidase , 2012 .

[17]  K. Hodgson,et al.  Spectroscopic and crystallographic characterization of "alternative resting" and "resting oxidized" enzyme forms of bilirubin oxidase: implications for activity and electrochemical behavior of multicopper oxidases. , 2012, Journal of the American Chemical Society.

[18]  S. O. Andersen Insect cuticular sclerotization: a review. , 2010, Insect biochemistry and molecular biology.

[19]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[20]  N. Dittmer,et al.  Characterization of endogenous and recombinant forms of laccase-2, a multicopper oxidase from the tobacco hornworm, Manduca sexta. , 2009, Insect biochemistry and molecular biology.

[21]  T. Asano,et al.  Cuticle laccase of the silkworm, Bombyx mori: purification, gene identification and presence of its inactive precursor in the cuticle. , 2009, Insect biochemistry and molecular biology.

[22]  David S. Goodsell,et al.  A semiempirical free energy force field with charge‐based desolvation , 2007, J. Comput. Chem..

[23]  K. Kataoka,et al.  Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. , 2007, Chemical record.

[24]  R. Varón,et al.  Calculating molar absorptivities for quinones: application to the measurement of tyrosinase activity. , 2006, Analytical biochemistry.

[25]  K. Kramer,et al.  Model reactions for insect cuticle sclerotization: cross-linking of recombinant cuticular proteins upon their laccase-catalyzed oxidative conjugation with catechols. , 2006, Insect biochemistry and molecular biology.

[26]  C. Mougin,et al.  Shifting the optimal pH of activity for a laccase from the fungus Trametes versicolor by structure-based mutagenesis. , 2006, Protein engineering, design & selection : PEDS.

[27]  M. Hattori,et al.  Laccase-type phenoloxidase in salivary glands and watery saliva of the green rice leafhopper, Nephotettix cincticeps. , 2005, Journal of insect physiology.

[28]  R. Beeman,et al.  Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Shiro Kobayashi,et al.  Oxidative polymerization of phenols revisited , 2003 .

[30]  K. Piontek,et al.  Crystal Structure of a Laccase from the FungusTrametes versicolor at 1.90-Å Resolution Containing a Full Complement of Coppers* , 2002, The Journal of Biological Chemistry.

[31]  F. García-Cánovas,et al.  Reactivity of horseradish peroxidase compound II toward substrates: kinetic evidence for a two-step mechanism. , 2000, Biochemistry.

[32]  M F Sanner,et al.  Python: a programming language for software integration and development. , 1999, Journal of molecular graphics & modelling.

[33]  J M Thornton,et al.  LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. , 1995, Protein engineering.

[34]  S. Sakai,et al.  Factors Influencing the Antioxidant Activities of Phenols by an Ab Initio Study , 1993 .

[35]  M. García-Moreno,et al.  Effect of pH on the oxidation pathway of dopamine catalyzed by tyrosinase. , 1991, Archives of biochemistry and biophysics.

[36]  R. Varón,et al.  Effect of pH on the oxidation pathway of alpha-methyldopa catalysed by tyrosinase. , 1990, Biochemical Journal.

[37]  F. García-Carmona,et al.  Study of α-methyldopa oxidation by tyrosinase , 1986 .

[38]  F. García-Carmona,et al.  Isoproterenol oxidation by tyrosinase: intermediates characterization and kinetic study. , 1985, Biochemistry international.

[39]  F. García-Carmona,et al.  Chemical intermediates in dopamine oxidation by tyrosinase, and kinetic studies of the process. , 1984, Archives of biochemistry and biophysics.

[40]  F. García-Carmona,et al.  Kinetic study and intermediates identification of noradrenaline oxidation by tyrosinase. , 1984, Biochemical pharmacology.

[41]  F. García-Carmona,et al.  Kinetic study of the pathway of melanizationn between l-dopa and dopachrome , 1982 .

[42]  D. G. Farnum Charge Density-NMR Chemical Shift Correlations in Organic Ions , 1975 .