A Positive Feedback Loop between Akt and mTORC2 via SIN1 Phosphorylation.

[1]  D. Sabatini,et al.  Regulation of mTORC1 by amino acids. , 2014, Trends in cell biology.

[2]  Dudley Lamming,et al.  Hepatic signaling by the mechanistic target of rapamycin complex 2 (mTORC2) , 2014, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[3]  Steven P. Gygi,et al.  Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signaling to suppress tumorigenesis , 2013, Nature Cell Biology.

[4]  B. Stieger Faculty Opinions recommendation of Feature Article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. , 2013 .

[5]  David E. James,et al.  Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2 , 2013, Cell metabolism.

[6]  Tyler T. Risom,et al.  Targeting Activated Akt with GDC-0068, a Novel Selective Akt Inhibitor That Is Efficacious in Multiple Tumor Models , 2013, Clinical Cancer Research.

[7]  A. Soukas,et al.  Identification of Akt-independent Regulation of Hepatic Lipogenesis by Mammalian Target of Rapamycin (mTOR) Complex 2* , 2012, The Journal of Biological Chemistry.

[8]  M. Hall,et al.  Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. , 2012, Cell metabolism.

[9]  D. Sabatini,et al.  mTOR Signaling in Growth Control and Disease , 2012, Cell.

[10]  Bin Zhang,et al.  PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse , 2011, Nucleic Acids Res..

[11]  M. Hall,et al.  Inducible raptor and rictor knockout mouse embryonic fibroblasts. , 2012, Methods in molecular biology.

[12]  S. Gygi,et al.  Phosphoproteomic Analysis Identifies Grb10 as an mTORC1 Substrate That Negatively Regulates Insulin Signaling , 2011, Science.

[13]  D. James,et al.  Next-generation Akt inhibitors provide greater specificity: effects on glucose metabolism in adipocytes. , 2011, The Biochemical journal.

[14]  L. Cantley,et al.  Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size. , 2011, Molecular cell.

[15]  D. Sabatini,et al.  The mTOR-Regulated Phosphoproteome Reveals a Mechanism of mTORC1-Mediated Inhibition of Growth Factor Signaling , 2011, Science.

[16]  V. Zinzalla,et al.  Activation of mTORC2 by Association with the Ribosome , 2011, Cell.

[17]  M. Magnuson,et al.  Fat Cell–Specific Ablation of Rictor in Mice Impairs Insulin-Regulated Fat Cell and Whole-Body Glucose and Lipid Metabolism , 2010, Diabetes.

[18]  J. Asara,et al.  Characterization of Rictor Phosphorylation Sites Reveals Direct Regulation of mTOR Complex 2 by S6K1 , 2009, Molecular and Cellular Biology.

[19]  T. Walther,et al.  TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain. , 2009, Molecular biology of the cell.

[20]  D. Alessi,et al.  mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). , 2008, The Biochemical journal.

[21]  A. Newton,et al.  The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C , 2008, The EMBO journal.

[22]  K. Inoki,et al.  Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling , 2008, The EMBO journal.

[23]  John C. Lawrence,et al.  Muscle-Specific Deletion of Rictor Impairs Insulin-Stimulated Glucose Transport and Enhances Basal Glycogen Synthase Activity , 2007, Molecular and Cellular Biology.

[24]  Nicole Cloonan,et al.  Human Sin1 contains Ras-binding and pleckstrin homology domains and suppresses Ras signalling. , 2007, Cellular signalling.

[25]  D. Hirschberg,et al.  Mechanism for activation of the growth factor‐activated AGC kinases by turn motif phosphorylation , 2007, The EMBO journal.

[26]  D. Guertin,et al.  Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. , 2006, Developmental cell.

[27]  M. Birnbaum,et al.  Quantitative Analysis of Anti-apoptotic Function of Akt in Akt1 and Akt2 Double Knock-out Mouse Embryonic Fibroblast Cells under Normal and Stressed Conditions* , 2006, Journal of Biological Chemistry.

[28]  J. Qin,et al.  SIN1/MIP1 Maintains rictor-mTOR Complex Integrity and Regulates Akt Phosphorylation and Substrate Specificity , 2006, Cell.

[29]  Jacob D. Jaffe,et al.  mSin1 Is Necessary for Akt/PKB Phosphorylation, and Its Isoforms Define Three Distinct mTORC2s , 2006, Current Biology.

[30]  David E James,et al.  Characterization of the Role of the Rab GTPase-activating Protein AS160 in Insulin-regulated GLUT4 Trafficking* , 2005, Journal of Biological Chemistry.

[31]  D. Guertin,et al.  Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex , 2005, Science.

[32]  J. Soh,et al.  PKC-η mediates glioblastoma cell proliferation through the Akt and mTOR signaling pathways , 2004, Oncogene.

[33]  T. Hunter,et al.  Inappropriate Activation of the TSC/Rheb/mTOR/S6K Cassette Induces IRS1/2 Depletion, Insulin Resistance, and Cell Survival Deficiencies , 2004, Current Biology.

[34]  I. Gout,et al.  The TSC1-2 tumor suppressor controls insulin–PI3K signaling via regulation of IRS proteins , 2004, The Journal of cell biology.

[35]  O. Hino,et al.  Tsc tumour suppressor proteins antagonize amino-acid–TOR signalling , 2002, Nature Cell Biology.

[36]  P. Cohen,et al.  The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells , 2000, Current Biology.

[37]  A. Newton,et al.  Akt/Protein Kinase B Is Regulated by Autophosphorylation at the Hypothetical PDK-2 Site* , 2000, The Journal of Biological Chemistry.

[38]  J. Avruch,et al.  Amino Acid Sufficiency and mTOR Regulate p70 S6 Kinase and eIF-4E BP1 through a Common Effector Mechanism* , 1998, The Journal of Biological Chemistry.

[39]  P. Cohen,et al.  Role of Translocation in the Activation and Function of Protein Kinase B* , 1997, The Journal of Biological Chemistry.