Partial Quadratic Entropy of Uncertain Random Variables

Partial entropy is a measure to characterize how much of entropy of an uncertain random variable belongs to uncertain variables. In this paper, a definition of partial quadratic entropy of uncertain random variables is proposed. Furthermore, some properties of partial quadratic entropy are derived such as positive linearity. c ©2016 World Academic Press, UK. All rights reserved.

[1]  Xiaowei Chen,et al.  Maximum Entropy Principle for Uncertain Variables , 2011 .

[2]  Baoding Liu,et al.  Uncertainty Theory - A Branch of Mathematics for Modeling Human Uncertainty , 2011, Studies in Computational Intelligence.

[3]  Jinwu Gao,et al.  Sine Entropy for uncertain Variables , 2013, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[4]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[5]  Yuhan Liu,et al.  Uncertain random variables: a mixture of uncertainty and randomness , 2013, Soft Comput..

[6]  Yian-Kui Liu,et al.  Fuzzy random programming with equilibrium chance constraints , 2005, Inf. Sci..

[7]  Rong Gao,et al.  Law of large numbers for uncertain random variables with different chance distributions , 2016, J. Intell. Fuzzy Syst..

[8]  Bart Kosko,et al.  Fuzzy entropy and conditioning , 1986, Inf. Sci..

[9]  Huibert Kwakernaak,et al.  Fuzzy random variables--II. Algorithms and examples for the discrete case , 1979, Inf. Sci..

[10]  Yian-Kui Liu,et al.  Fuzzy Random Variables: A Scalar Expected Value Operator , 2003, Fuzzy Optim. Decis. Mak..

[11]  Settimo Termini,et al.  A Definition of a Nonprobabilistic Entropy in the Setting of Fuzzy Sets Theory , 1972, Inf. Control..

[12]  Baoding Liu Some Research Problems in Uncertainty Theory , 2009 .

[13]  Rong Gao,et al.  Milne method for solving uncertain differential equations , 2016, Appl. Math. Comput..

[14]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[15]  Yongchao Hou,et al.  Subadditivity of chance measure , 2014 .

[16]  Wei Dai,et al.  Entropy of function of uncertain variables , 2012, Math. Comput. Model..

[17]  R. Yager ON THE MEASURE OF FUZZINESS AND NEGATION Part I: Membership in the Unit Interval , 1979 .

[18]  Nikhil R. Pal,et al.  Some new information measures for fuzzy sets , 1993, Inf. Sci..

[19]  Yuhan Liu,et al.  Uncertain random programming with applications , 2013, Fuzzy Optim. Decis. Mak..

[20]  Baoding Liu Why is There a Need for Uncertainty Theory , 2012 .

[21]  Huibert Kwakernaak,et al.  Fuzzy random variables - I. definitions and theorems , 1978, Inf. Sci..

[22]  R. Kruse,et al.  Statistics with vague data , 1987 .

[23]  A. Bonaert Introduction to the theory of Fuzzy subsets , 1977, Proceedings of the IEEE.

[24]  Gang Shi,et al.  Entropy of Uncertain Random Variables wi h Application to Minimum Spanning Tree Problem , 2017, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[25]  Wei Dai,et al.  Quadratic entropy of uncertain variables , 2018, Soft Comput..