On the Almost Sure Location of the Singular Values of Certain Gaussian Block-Hankel Large Random Matrices

This paper studies the almost sure location of the eigenvalues of matrices $${\mathbf{W}}_N {\mathbf{W}}_N^{*}$$WNWN∗, where $${\mathbf{W}}_N = ({\mathbf{W}}_N^{(1)T}, \ldots , {\mathbf{W}}_N^{(M)T})^{T}$$WN=(WN(1)T,…,WN(M)T)T is a $${\textit{ML}} \times N$$ML×N block-line matrix whose block-lines $$({\mathbf{W}}_N^{(m)})_{m=1, \ldots , M}$$(WN(m))m=1,…,M are independent identically distributed $$L \times N$$L×N Hankel matrices built from i.i.d. standard complex Gaussian sequences. It is shown that if $$M \rightarrow +\infty $$M→+∞ and $$\frac{{\textit{ML}}}{N} \rightarrow c_* (c_* \in (0, \infty ))$$MLN→c∗(c∗∈(0,∞)), then the empirical eigenvalue distribution of $${\mathbf{W}}_N {\mathbf{W}}_N^{*}$$WNWN∗ converges almost surely towards the Marcenko–Pastur distribution. More importantly, it is established using the Haagerup–Schultz–Thorbjornsen ideas that if $$L = O(N^{\alpha })$$L=O(Nα) with $$\alpha < 2/3$$α<2/3, then, almost surely, for $$N$$N large enough, the eigenvalues of $${\mathbf{W}}_N {\mathbf{W}}_N^{*}$$WNWN∗ are located in the neighbourhood of the Marcenko–Pastur distribution. It is conjectured that the condition $$\alpha < 2/3$$α<2/3 is optimal.

[1]  Philippe Loubaton,et al.  Prediction error method for second-order blind identification , 1997, IEEE Trans. Signal Process..

[2]  Philippe Loubaton,et al.  LARGE INFORMATION PLUS NOISE RANDOM MATRIX MODELS AND CONSISTENT SUBSPACE ESTIMATION IN LARGE SENSOR NETWORKS , 2011, 1106.5119.

[3]  Philippe Loubaton,et al.  ON BILINEAR FORMS BASED ON THE RESOLVENT OF LARGE RANDOM MATRICES , 2010, 1004.3848.

[4]  V. Girko,et al.  Theory of stochastic canonical equations , 2001 .

[5]  Sanchayan Sen,et al.  Limiting spectral distribution of sample autocovariance matrices , 2011 .

[6]  P. Loubaton,et al.  Almost sure localization of the eigenvalues in a Gaussian information plus noise model - Application to the spiked models , 2010, 1009.5807.

[7]  Hanne Schultz Non-commutative polynomials of independent Gaussian random matrices. The real and symplectic cases. , 2003 .

[8]  Raj Rao Nadakuditi,et al.  Fundamental Limit of Sample Generalized Eigenvalue Based Detection of Signals in Noise Using Relatively Few Signal-Bearing and Noise-Only Samples , 2009, IEEE Journal of Selected Topics in Signal Processing.

[9]  C. Donati-Martin,et al.  Free Convolution with a Semicircular Distribution and Eigenvalues of Spiked Deformations of Wigner Matrices , 2010, 1006.3684.

[10]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[11]  Arogyaswami Paulraj,et al.  A subspace approach to blind space-time signal processing for wireless communication systems , 1997, IEEE Trans. Signal Process..

[12]  Jamie S. Evans,et al.  Large system performance of linear multiuser receivers in multipath fading channels , 2000, IEEE Trans. Inf. Theory.

[13]  N. Akhiezer,et al.  The Classical Moment Problem. , 1968 .

[14]  L. Pastur,et al.  Eigenvalue Distribution of Large Random Matrices , 2011 .

[15]  Uffe Haagerup,et al.  A new application of random matrices: Ext(C^*_{red}(F_2)) is not a group , 2002 .

[16]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .

[17]  Philippe Loubaton,et al.  A subspace estimator for fixed rank perturbations of large random matrices , 2011, J. Multivar. Anal..

[18]  Arup Bose,et al.  Limiting Spectral Distribution of Block Matrices with Toeplitz Block Structure , 2011, 1111.1901.

[19]  C. Donati-Martin,et al.  Strong asymptotic freeness for Wigner and Wishart matrices preprint , 2005, math/0504414.

[20]  Philippe Loubaton,et al.  Improved Subspace Estimation for Multivariate Observations of High Dimension: The Deterministic Signals Case , 2010, IEEE Transactions on Information Theory.

[21]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[22]  C. Male The norm of polynomials in large random and deterministic matrices , 2010, 1004.4155.

[23]  Greg W. Anderson,et al.  Convergence of the largest singular value of a polynomial in independent Wigner matrices , 2011, 1103.4825.

[24]  W. Hachem,et al.  Deterministic equivalents for certain functionals of large random matrices , 2005, math/0507172.

[25]  Eric Moulines,et al.  Subspace methods for the blind identification of multichannel FIR filters , 1995, IEEE Trans. Signal Process..

[26]  A. Dembo,et al.  Spectral measure of large random Hankel, Markov and Toeplitz matrices , 2003, math/0307330.

[27]  Raj Rao Nadakuditi,et al.  The singular values and vectors of low rank perturbations of large rectangular random matrices , 2011, J. Multivar. Anal..

[28]  Leonid Pastur,et al.  A Simple Approach to the Global Regime of Gaussian Ensembles of Random Matrices , 2005 .

[29]  Alan Edelman,et al.  Sample Eigenvalue Based Detection of High-Dimensional Signals in White Noise Using Relatively Few Samples , 2007, IEEE Transactions on Signal Processing.

[30]  J. W. Silverstein,et al.  On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices , 2007 .

[31]  Philippe Loubaton,et al.  A New Approach for Mutual Information Analysis of Large Dimensional Multi-Antenna Channels , 2008, IEEE Transactions on Information Theory.

[32]  C. Donati-Martin,et al.  The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. , 2007, 0706.0136.

[33]  Arogyaswami Paulraj,et al.  Joint angle and delay estimation using shift-invariance techniques , 1998, IEEE Trans. Signal Process..

[34]  Philippe Loubaton,et al.  A New Approach for Capacity Analysis of Large Dimensional Multi-Antenna Channels , 2006, ArXiv.

[35]  Dang-Zheng Liu,et al.  Limit Distributions of Eigenvalues for Random Block Toeplitz and Hankel Matrices , 2010, 1010.3191.

[36]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[37]  Roland Speicher,et al.  IT ] 9 O ct 2 00 6 Spectra of large block matrices R . Rashidi , 2008 .

[38]  C. Tracy,et al.  Introduction to Random Matrices , 1992, hep-th/9210073.