Future CMB constraints on cosmic birefringence and implications for fundamental physics

The primary scientific target of the CMB polarization experiments that are currently being built and proposed is the detection of primordial tensor perturbations. As a byproduct, these instruments will significantly improve constraints on cosmic birefringence, or the rotation of the CMB polarization plane. If convincingly detected, cosmic birefringence would be a dramatic manifestation of physics beyond the standard models of particle physics and cosmology. We forecast the bounds on the cosmic polarization rotation (CPR) from the upcoming ground-based Simons Observatory (SO) and the space-based LiteBIRD experiments, as well as a "fourth generation" ground-based CMB experiment like CMB-S4 and the mid-cost space mission PICO. We examine the detectability of both a stochastic anisotropic rotation field and an isotropic rotation by a constant angle. CPR induces new correlations of CMB observables, including spectra of parity-odd type in the case of isotropic CPR, and mode-coupling correlations in the anisotropic rotation case. We find that LiteBIRD and SO will reduce the 1$\sigma$ bound on the isotropic CPR from the current value of 30 arcmin to 1.5 and 0.6 arcmin, respectively, while CMB-S4-like and PICO will reduce it to $\sim 0.1$ arcmin. The bounds on the amplitude of a scale-invariant CPR spectrum will be reduced by 1, 2 and 3 orders of magnitude by LiteBIRD, SO and CMB-S4-like/PICO, respectively. We discuss implications of the forecasted CPR bounds for pseudoscalar fields, primordial magnetic fields (PMF), and violations of Lorentz invariance. We find that CMB-S4-like and PICO can reduce the 1$\sigma$ bound on the amplitude of the scale-invariant PMF from 1 nG to 0.1 nG, while also probing the magnetic field of the Milky Way. They will also significantly improve bounds on the axion-photon coupling, placing stringent constraints on the string theory axions.

[1]  Dongsu Ryu,et al.  The First Magnetic Fields , 1999, astro-ph/9912260.

[2]  B polarization of the CMB from Faraday rotation , 2004, astro-ph/0405396.

[3]  Christopher M. Hirata,et al.  First CMB constraints on direction-dependent cosmological birefringence from WMAP-7 , 2012, 1206.5546.

[4]  E. L. Wright,et al.  Four-Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results , 1996, astro-ph/9601067.

[5]  Joseph Silk,et al.  Constraints on CPT violation from Wilkinson Microwave Anisotropy Probe three year polarization data: A wavelet analysis , 2007, 0705.0810.

[6]  Seokcheon Lee,et al.  Imprint of Scalar Dark Energy on Cosmic Microwave Background Polarization , 2013, 1307.6298.

[7]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[8]  A. M. Taylor,et al.  EGMF Constraints from Simultaneous GeV-TeV Observations of Blazars , 2011, 1101.0932.

[9]  R. Durrer,et al.  Magnetic fields from inflation: The CMB temperature anisotropies , 2013, 1308.3348.

[10]  New constraints on cosmic polarization rotation from the ACTPol cosmic microwave background B-Mode polarization observation and the BICEP2 constraint update , 2014, 1412.8569.

[11]  A. G. Vieregg,et al.  BICEP2 / Keck Array IX: New bounds on anisotropies of CMB polarization rotation and implications for axionlike particles and primordial magnetic fields , 2017, 1705.02523.

[12]  R. Durrer,et al.  Scale-invariant helical magnetic field evolution and the duration of inflation , 2016, 1610.03139.

[13]  J. Yokoyama,et al.  Long-term dynamics of cosmological axion strings , 2018, Progress of Theoretical and Experimental Physics.

[14]  J. Tasson,et al.  What do we know about Lorentz invariance? , 2014, Reports on progress in physics. Physical Society.

[15]  G. Ghisellini,et al.  Extreme TeV blazars and the intergalactic magnetic field , 2010, 1009.1048.

[16]  A. Kostelecký,et al.  Electrodynamics with Lorentz-violating operators of arbitrary dimension , 2009, 0905.0031.

[17]  F. Paci,et al.  Constraints on cosmological birefringence energy dependence from CMB polarization data , 2012, 1211.3321.

[18]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[19]  Y. Maravin,et al.  Faraday rotation limits on a primordial magnetic field from Wilkinson Microwave Anisotropy Probe five-year data , 2008, 0806.1876.

[20]  A. Albrecht,et al.  Exploring parameter constraints on quintessential dark energy: The pseudo-Nambu-Goldstone-boson model , 2007, 0712.2879.

[21]  Matias Zaldarriaga,et al.  Gravitational lensing effect on cosmic microwave background polarization , 1998, astro-ph/9803150.

[22]  Ryo Namba,et al.  Observable non-gaussianity from gauge field production in slow roll inflation, and a challenging connection with magnetogenesis , 2012, 1202.1469.

[23]  Searching for CPT violation with cosmic microwave background data from WMAP and BOOMERANG. , 2006, Physical review letters.

[24]  E. Witten,et al.  Axions In String Theory , 2006, hep-th/0605206.

[25]  J. Ellis,et al.  Probes of Lorentz Violation , 2011, 1111.1178.

[26]  Silvia Masi,et al.  CMB polarization systematics, cosmological birefringence, and the gravitational waves background , 2009, 0905.1651.

[27]  R. W. Ogburn,et al.  Detection of B-mode polarization at degree angular scales by BICEP2. , 2014, Physical review letters.

[28]  Lyth Axions and inflation: Vacuum fluctuations. , 1992, Physical review. D, Particles and fields.

[29]  Wayne Hu,et al.  Mass Reconstruction with Cosmic Microwave Background Polarization , 2002 .

[30]  J. Xia,et al.  TESTING CPT SYMMETRY WITH CURRENT AND FUTURE CMB MEASUREMENTS , 2014, 1405.5637.

[31]  V. Kostelecký,et al.  CPT and strings , 1991 .

[32]  Matias Zaldarriaga,et al.  Constraining a spatially dependent rotation of the cosmic microwave background polarization , 2009, 0902.4466.

[33]  G. Moore,et al.  How to simulate global cosmic strings with large string tension , 2017, 1707.05566.

[34]  C. Hirata,et al.  Exploring circular polarization in the CMB due to conventional sources of cosmic birefringence , 2018, Journal of Cosmology and Astroparticle Physics.

[35]  Georg G. Raffelt,et al.  Particle physics from stars , 2003 .

[36]  A. Kostelecký,et al.  $CPT$ violation and the standard model , 1997, hep-ph/9703464.

[37]  Yong-Seon Song,et al.  Limit on the detectability of the energy scale of inflation. , 2002, Physical review letters.

[38]  Ievgen Vovk,et al.  Evidence for Strong Extragalactic Magnetic Fields from Fermi Observations of TeV Blazars , 2010, Science.

[39]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[40]  S. Alexander Inflationary Birefringence and Baryogenesis , 2016, 1604.00703.

[41]  R. Durrer,et al.  Cosmological magnetic fields: their generation, evolution and observation , 2013 .

[42]  Thomas J. Loredo,et al.  Bayesian Analysis of the Polarization of Distant Radio Sources: Limits on Cosmological Birefringence , 1997 .

[43]  D. Lyth,et al.  Constraining the inflationary energy scale from axion cosmology , 1992 .

[44]  by a primordial magnetic field and its effect upon temperature anisotropy , 1996, astro-ph/9608098.

[45]  G. Raffelt Particle Physics from Stars , 1999, hep-ph/9903472.

[46]  C. Geng,et al.  Neutrino number asymmetry and cosmological birefringence , 2007, 0706.0080.

[47]  R. Aikin,et al.  Self-Calibration of BICEP1 Three-Year Data and Constraints on Astrophysical Polarization Rotation , 2013, 1312.7877.

[48]  M. Kamionkowski,et al.  How to derotate the cosmic microwave background polarization. , 2008, Physical review letters.

[49]  Nicolas Ponthieu,et al.  CMB polarization systematics due to beam asymmetry: Impact on inflationary science , 2007, 0709.1513.

[50]  Alan Kostelecky,et al.  Astrophysical Tests of Lorentz and CPT Violation with Photons , 2008, 0809.2846.

[51]  A. Lewis,et al.  Massive neutrinos and magnetic fields in the early universe , 2009, 0911.2714.

[52]  L. Pogosian,et al.  Probing primordial magnetism with off-diagonal correlators of CMB polarization , 2012, 1207.3356.

[53]  J. Frieman,et al.  Natural inflation with pseudo Nambu-Goldstone bosons. , 1990, Physical review letters.

[54]  J. Carlstrom,et al.  Detection of polarization in the cosmic microwave background using DASI , 2002, Nature.

[55]  Ue-Li Pen,et al.  Polarization of the Microwave Background in Defect Models , 1997 .

[56]  J. Xia,et al.  Primordial Gravitational Waves Measurements and Anisotropies of CMB Polarization Rotation , 2015, 1506.03526.

[57]  M. Kamionkowski Nonuniform cosmological birefringence and active galactic nuclei , 2010, 1004.3544.

[58]  L. Amendola,et al.  Effects of modified gravity on B-mode polarization , 2014, 1405.7004.

[59]  F. Finelli,et al.  Impact of stochastic primordial magnetic fields on the scalar contribution to cosmic microwave background anisotropies , 2008, 0803.1246.

[60]  M. Mori,et al.  LOWER BOUNDS ON INTERGALACTIC MAGNETIC FIELDS FROM SIMULTANEOUSLY OBSERVED GeV–TeV LIGHT CURVES OF THE BLAZAR Mrk 501 , 2011, 1103.3835.

[61]  M. Kamionkowski,et al.  Cosmic Microwave Background Statistics for a Direction-Dependent Primordial Power Spectrum , 2007, 0709.1144.

[62]  F. Finelli,et al.  The full contribution of a stochastic background of magnetic fields to CMB anisotropies , 2008, 0811.0230.

[63]  Bharat Ratra,et al.  Cosmological 'seed' magnetic field from inflation , 1991 .

[64]  Levon Pogosian,et al.  Constraints on primordial magnetic fields from Planck data combined with the South Pole Telescope CMB B-mode polarization measurements , 2016, 1611.00757.

[65]  Mingzhe Li,et al.  New Constraints on Anisotropic Rotation of CMB Polarization , 2013, 1303.1881.

[66]  E. Leitch,et al.  IMPROVED MEASUREMENTS OF THE TEMPERATURE AND POLARIZATION OF THE COSMIC MICROWAVE BACKGROUND FROM QUaD , 2009, 0906.1003.

[67]  A. Kostelecký Gravity, Lorentz violation, and the standard model , 2003, hep-th/0312310.

[68]  M. Mewes,et al.  Sensitive polarimetric search for relativity violations in gamma-ray bursts. , 2006, Physical review letters.

[69]  A. Kostelecký,et al.  Data Tables for Lorentz and CPT Violation , 2008, 0801.0287.

[70]  R. W. Ogburn,et al.  Joint Analysis of BICEP2/Keck Array and Planck Data , 2015, 1502.00612.

[71]  Klaus Dolag,et al.  LOWER LIMIT ON THE STRENGTH AND FILLING FACTOR OF EXTRAGALACTIC MAGNETIC FIELDS , 2011 .

[72]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[73]  Wayne Hu,et al.  Mass Reconstruction with CMB Polarization , 2001 .

[74]  F. Finelli,et al.  The scalar, vector and tensor contributions of a stochastic background of magnetic fields to cosmic microwave background anisotropies , 2008, 0811.0230.

[75]  Gong-Bo Zhao,et al.  Testing CPT Symmetry with CMB Measurements: Update after WMAP5 , 2008, 0803.2350.

[76]  G. Hinshaw,et al.  Structure in the COBE differential microwave radiometer first-year maps , 1992 .

[77]  Analyzing weak lensing of the cosmic microwave background using the likelihood function , 2002, astro-ph/0209489.

[78]  J. Xia,et al.  Testing CPT Symmetry with CMB Measurements , 2007, 0710.3325.

[79]  Juan García-Bellido,et al.  Magnetic field production during preheating at the electroweak scale. , 2007, Physical review letters.

[80]  Guo-chin Liu,et al.  Axion Dark Matter Induced Cosmic Microwave Background $B$-modes , 2016, 1612.02104.

[81]  Asantha Cooray,et al.  Derotation of the cosmic microwave background polarization: Full-sky formalism , 2009, 0905.1687.

[82]  Tanmay Vachaspati,et al.  Magnetic fields from cosmological phase transitions , 1991 .

[83]  T. Ensslin,et al.  An improved map of the Galactic Faraday sky , 2011, 1111.6186.

[84]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[85]  F. Wilczek Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .

[86]  Dario Grasso,et al.  Magnetic Fields in the Early Universe , 2001 .

[87]  R. Durrer,et al.  Testing Lorentz invariance violation with Wilkinson Microwave Anisotropy Probe five year data , 2008 .

[88]  D. Marsh,et al.  Axion Cosmology , 2015, 1510.07633.

[89]  Alan Kostelecky,et al.  Lorentz-Violating Extension of the Standard Model , 1998 .

[90]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[91]  J. Yokoyama,et al.  Numerical Analysis of the Formation and Evolution of Global Strings in 2+1 Dimensions , 1998, hep-ph/9808326.

[92]  A. Vilenkin,et al.  Cosmic strings and domain walls in models with Goldstone and pseudo Goldstone bosons , 1982 .

[93]  J. Xia,et al.  Probing CPT violation with CMB polarization measurements , 2009, 0908.1876.

[94]  R. W. Ogburn,et al.  Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band. , 2016, Physical review letters.

[95]  M. Hayakawa Perturbative analysis on infrared aspects of noncommutative QED on R4 , 2000 .

[96]  Douglas Scott,et al.  Constraints on direction-dependent cosmic birefringence from Planck polarization data , 2017, 1705.06387.

[97]  Albert Stebbins,et al.  Statistics of cosmic microwave background polarization , 1997 .

[98]  U. Seljak,et al.  Signature of gravity waves in polarization of the microwave background , 1996, astro-ph/9609169.

[99]  Samuel,et al.  Spontaneous breaking of Lorentz symmetry in string theory. , 1989, Physical review. D, Particles and fields.

[100]  L. Pogosian,et al.  Searching for primordial magnetic fields with CMB B-modes , 2018, 1801.08936.

[101]  D. Semikoz,et al.  FERMI/LAT OBSERVATIONS OF 1ES 0229+200: IMPLICATIONS FOR EXTRAGALACTIC MAGNETIC FIELDS AND BACKGROUND LIGHT , 2011, 1112.2534.

[102]  K. Subramanian,et al.  The origin, evolution and signatures of primordial magnetic fields , 2015, Reports on progress in physics. Physical Society.

[103]  C. Skordis,et al.  Pseudoscalar perturbations and polarization of the cosmic microwave background. , 2008, Physical review letters.

[104]  G. Villadoro,et al.  Axions from strings: the attractive solution , 2018, Journal of High Energy Physics.

[105]  S. Weinberg A new light boson , 1978 .

[106]  Strong equivalence, Lorentz and CPT violation, anti-hydrogen spectroscopy and gamma-ray burst polarimetry☆ , 2004, hep-th/0409125.

[107]  Sean M. Carroll QUINTESSENCE AND THE REST OF THE WORLD : SUPPRESSING LONG-RANGE INTERACTIONS , 1998 .

[108]  A. Gruppuso,et al.  Constraints on parity violation from ACTpol and forecasts for forthcoming CMB experiments , 2016, 1605.01667.

[109]  Turner,et al.  Inflation-produced, large-scale magnetic fields. , 1988, Physical review. D, Particles and fields.

[110]  Cosmic microwave background polarization signals from tangled magnetic fields. , 2000, Physical review letters.

[111]  Symmetry Breaking Through Bell-Jackiw Anomalies , 1976 .

[112]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[113]  Field,et al.  Limits on a Lorentz- and parity-violating modification of electrodynamics. , 1990, Physical review. D, Particles and fields.

[114]  G. Hilton,et al.  LiteBIRD: Mission Overview and Focal Plane Layout , 2016 .

[115]  J. Xia Cosmological CPT Violation and CMB Polarization Measurements , 2012, 1201.4457.

[116]  C. Wetterich COSMOLOGY AND THE FATE OF DILATATION SYMMETRY , 1988, 1711.03844.

[117]  Constraints on cosmological birefringence from PLANCK and Bicep2/Keck data , 2016 .

[118]  Tanmay Vachaspati,et al.  Leptogenesis and primordial magnetic fields , 2013, 1309.2315.

[119]  F. Finelli,et al.  WMAP 7 year constraints on CPT violation from large angle CMB anisotropies , 2011, 1107.5548.

[120]  Cosmology,et al.  Parity violation constraints using cosmic microwave background polarization spectra from 2006 and 2007 observations by the QUaD polarimeter. , 2008, Physical review letters.

[121]  Levon Pogosian,et al.  CMB Faraday rotation as seen through the Milky Way , 2013, 1305.7225.

[122]  Levon Pogosian,et al.  Searching for primordial magnetism with multifrequency cosmic microwave background experiments , 2013, 1311.2926.

[123]  C. Baccigalupi,et al.  Measuring the speed of cosmological gravitational waves. , 2014, 1405.7974.

[124]  CPT, strings, and meson factories. , 1995, Physical review. D, Particles and fields.

[125]  J. Aumont,et al.  Planck intermediate results. XLIX. Parity-violation constraints from polarization data , 2016, 1605.08633.

[126]  P. A. R. Ade,et al.  MEASUREMENTS OF SUB-DEGREE B-MODE POLARIZATION IN THE COSMIC MICROWAVE BACKGROUND FROM 100 SQUARE DEGREES OF SPTPOL DATA , 2015, 1503.02315.

[127]  S. Carroll,et al.  Noncommutative field theory and Lorentz violation. , 2001, Physical review letters.

[128]  Microwave Background Signatures of a Primordial Stochastic Magnetic Field , 2001, astro-ph/0105504.

[129]  E. Milotti,et al.  The PVLAS experiment: measuring vacuum magnetic birefringence and dichroism with a birefringent Fabry–Perot cavity , 2015, 1510.08052.

[130]  M. Kunz,et al.  New CMB constraints for Abelian Higgs cosmic strings , 2016, 1609.03386.

[131]  Hill,et al.  Cosmology with ultralight pseudo Nambu-Goldstone bosons. , 1995, Physical review letters.

[132]  Davis,et al.  Imprint of gravitational waves on the cosmic microwave background. , 1993, Physical review letters.

[133]  Nemanja Kaloper,et al.  Of pNGB qui𝒩tessence , 2005, astro-ph/0511543.

[134]  Patrick J. McCarthy,et al.  Large rotation measures in radio galaxies at z > 2 , 1998 .

[135]  B. Keating,et al.  Revealing Cosmic Rotation , 2012, 1207.6640.

[136]  L. Sorbo,et al.  Confronting pseudo-Nambu-Goldstone-boson quintessence with data , 2007 .

[137]  E. Leitch,et al.  SECOND AND THIRD SEASON QUaD COSMIC MICROWAVE BACKGROUND TEMPERATURE AND POLARIZATION POWER SPECTRA , 2008, 0805.1944.

[138]  F. Finelli,et al.  Cosmological birefringence constraints from CMB and astrophysical polarization data , 2014, 1411.6287.

[139]  M. Zaldarriaga,et al.  Impact of instrumental systematic contamination on the lensing mass reconstruction using the CMB polarization , 2009, 0901.0285.

[140]  Albert Stebbins,et al.  A Probe of Primordial Gravity Waves and Vorticity , 1997 .

[141]  R. Peccei,et al.  CP Conservation in the Presence of Pseudoparticles , 1977 .

[142]  L. Pogosian,et al.  Primordial magnetism in the CMB: Exact treatment of Faraday rotation and WMAP7 bounds , 2011, 1106.1438.

[143]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[144]  Julian Borrill,et al.  POLARBEAR constraints on cosmic birefringence and primordial magnetic fields , 2015, 1509.02461.

[145]  A. Moss,et al.  Constraints on the fundamental string coupling from B-mode experiments. , 2011, Physical review letters.

[146]  A. Moss,et al.  Did BICEP2 see vector modes? First B-mode constraints on cosmic defects. , 2014, Physical review letters.

[147]  Gong-Bo Zhao,et al.  An efficient probe of the cosmological CPT violation , 2015, 1504.04507.

[148]  Edward J. Wollack,et al.  The Simons Observatory: science goals and forecasts , 2018, Journal of Cosmology and Astroparticle Physics.

[149]  Effect on cosmic microwave background polarization of coupling of quintessence to pseudoscalar formed from the electromagnetic field and its dual. , 2006, Physical review letters.

[150]  Marc Kamionkowski,et al.  Cosmological signature of new parity violating interactions , 1999 .

[151]  Abraham Loeb,et al.  Faraday Rotation of Microwave Background Polarization by a Primordial Magnetic Field , 1996 .

[152]  P. Davies,et al.  Special relativity , 1975, Nature.

[153]  E. M. Leitch,et al.  A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND B-MODE POLARIZATION POWER SPECTRUM AT SUB-DEGREE SCALES WITH POLARBEAR , 2014, 1403.2369.

[154]  Diego Harari,et al.  Effects of a Nambu-Goldstone boson on the polarization of radio galaxies and the cosmic microwave background , 1992 .

[155]  Wen Zhao,et al.  Fluctuations of cosmological birefringence and the effect on CMB B-mode polarization , 2014, 1403.3997.

[156]  Lorentz-violating electrodynamics and the cosmic microwave background. , 2007, Physical review letters.

[157]  L. Widrow,et al.  Origin of galactic and extragalactic magnetic fields , 2002, astro-ph/0207240.