Ecosystems emerging: 2. Dissipation

Abstract This third paper in the series on Ecosystems Emerging deals with properties resulting from the second law of thermodynamics. Dissipation of energy and matter, which is degradation from more to less organized states, causes cycling of matter and origination of networks. The second law is presented in two forms: the classical one and by means of exergy which measures useful energy. Energy and matter dissipation condition the formation of structures, growth, development and evolution. In contrast to the ecological cliche that energy does not cycle in ecosystems, it becomes evident that energy must cycle like matter because the two are coupled. Matter cycling is necessary for the continued existence of ecosystems on earth because the closed planet has only a finite supply of material resources. Biological dissipation takes a variety of forms: respiration, excretion, egestion, natural and predatory mortality and others. Relations of dissipation by organisms to size and temperature are causes of similar relations for a number of life processes and also for certain ecological characteristics of organisms. This underlies the theory of ecosystem size and structure. Recognition of matter dissipation leads to substantial changes in ecological paradigms. For example, dissipation of nutrients can have positive effects on ecosystem production. Grazing mortality can speed primary production. Therefore, ecological studies must focus more on fluxes than standing biomasses. Detrital and microbial food paths play a significant role in ecosystems. The classical ideas of trophic pyramids and ecological efficiencies are changed completely by studies of dissipation. Dissipation of information relates to decreasing biodiversity and the present crisis of environment can be explained as a dissipation-driven entropy crisis.

[1]  H. Feldman,et al.  The 3/4 mass exponent for energy metabolism is not a statistical artifact. , 1983, Respiration physiology.

[2]  L. Boltzmann The Second Law of Thermodynamics , 1974 .

[3]  P. Mauersberger Rates of primary production, respiration and grazing in accordance with the balances of energy and entropy , 1982 .

[4]  F. Rassoulzadegan,et al.  Plankton and nutrient dynamics in marine waters , 1995 .

[5]  James H. Matis,et al.  The water environs of Okefenokee swamp: An application of static linear environ analysis , 1982 .

[6]  E. G. Jørgensen,et al.  The Adaptation to Different Light Intensities in Chlorella vulgaris and the Time Dependenee on Transfer to a new Light Intensity , 1962 .

[7]  D. Bird,et al.  Bacterial Grazing by Planktonic Lake Algae , 1986, Science.

[8]  Hironori Hirata,et al.  Information theoretical analysis of ecological networks , 1984 .

[9]  Raymond L. Lindeman The trophic-dynamic aspect of ecology , 1942 .

[10]  R. Vollenweider,et al.  Scientific fundamentals of the eutrophication of lakes and flowing waters , 1968 .

[11]  Austin L Hughes Evolution without selection: Form and function by autoevolution , 1990 .

[12]  Bernard C. Patten,et al.  Energy, emergy and environs , 1992 .

[13]  Biophysikalische Fragestellungen in der Ökologie und Umweltforschung , 1976 .

[14]  F. Wielgolaski Fennoscandian Tundra Ecosystems , 1975, Ecological Studies.

[15]  Eugene P. Odum,et al.  The New Ecology , 1964 .

[16]  A. Heusner Energy metabolism and body size. II. Dimensional analysis and energetic non-similarity. , 1982, Respiration physiology.

[17]  J. A. R.,et al.  Temperature and Living Matter , 1935, Nature.

[18]  James J. Morgan,et al.  Numerical method for computing equilibriums in aqueous chemical systems , 1972 .

[19]  E. J. Gaboury The new ecology. , 1970, Canadian journal of public health = Revue canadienne de sante publique.

[20]  Robert E. Ulanowicz,et al.  Toward Canonical Trophic Aggregations , 1979, The American Naturalist.

[21]  Robert W. Bosserman,et al.  17 – Propagation of Cause in Ecosystems , 1976 .

[22]  L. M. Dickie,et al.  Body-size spectra of production and biomass as system-level indicators of ecological dynamics , 1991 .

[23]  R. Peters,et al.  PHOSPHORUS RELEASE BY DAPHNIA1 , 1973 .

[24]  M. Budyko,et al.  Climate and life , 1975 .

[25]  John G. Field,et al.  Network Analysis in Marine Ecology , 1989, Coastal and Estuarine Studies.

[26]  R. Heath,et al.  Are the phosphatases released by Daphnia magna components of its food?1 , 1984 .

[27]  William T. Peterson,et al.  Ecosystem Theory for Biological Oceanography. Proceedings of a Symposium Held March 16-23, 1984, in Quebec, Canada. Robert E. Ulanowicz , Trevor Platt , 1986 .

[28]  J. Krebs,et al.  Behavioural Ecology: An Evolutionary Approach , 1978 .

[29]  W. Humphreys ECOLOGICAL ENERGETICS OF GEOLYCOSA GODEFFROYI (ARANEAE: LYCOSIDAE) WITH AN APPRAISAL OF PRODUCTION EFFICIENCY IN ECTOTHERMIC ANIMALS , 1978 .

[30]  H. Parnas,et al.  An optimal policy for the metabolism of storage materials in unicellular algae. , 1976, Journal of theoretical biology.

[31]  Jackson R. Webster,et al.  Nutrient recycling and the stability of ecosystems , 1975 .

[32]  F. T. Jung The Fire of Life , 1962 .

[33]  E. D. Schneider,et al.  Life as a manifestation of the second law of thermodynamics , 1994 .

[34]  R. Peters The Ecological Implications of Body Size , 1983 .

[35]  H. Lieth Biophysikalische Fragestellungen in der kologie und Umweltforschung: Teil 2: Extremalprinzipien in kosystemen , 1976 .

[36]  B. N. Smallman,et al.  The physiology of diapause in Diacyclops navus Herrick (Crustacea, Copepoda) , 1971 .

[37]  D. Cushing A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified , 1989 .

[38]  E. Carpenter Introductory text , 1967, Money and Government.

[39]  W. Calder Size, Function, and Life History , 1988 .

[40]  M. Clarholm Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen , 1985 .

[41]  H. Mooney,et al.  Biodiversity and Ecosystem Function , 1994, Praktische Zahnmedizin Odonto-Stomatologie Pratique Practical Dental Medicine.

[42]  M. Huntley Temperature-Dependent Production of Marine Copepods: A Global Synthesis , 1992, The American Naturalist.

[43]  P. Blažka The Anaerobic Metabolism of Fish , 1958, Physiological Zoology.

[44]  Sven Erik Jørgensen,et al.  Complex ecology : the part-whole relation in ecosystems , 1995 .

[45]  Antonio Lima-de-Faria Evolution without selection , 1989, Cell.

[46]  L. Baker Environmental chemistry of lakes and reservoirs. , 1994, Environmental science & technology.

[47]  D. DeAngelis,et al.  A model of herbivore feedback on plant productivity , 1986 .

[48]  Ernst-Detlef Schulze,et al.  Flux Control in Biological Systems : A Comparative View , 1994 .

[49]  J. McCarthy,et al.  a Comparison of Chemical, Isotopic, and Enzymatic Methods for Measuring Nitrogen Assimilation of Marine PHYTOPLANKTON1 , 1972 .

[50]  T. Seastedt,et al.  Maximization of Densities of Soil Animals by Foliage Herbivory: Empirical Evidence, Graphical and Conceptual Models , 1988 .

[51]  W. G. Sprules,et al.  Plankton Size Spectra in Relation to Ecosystem Productivity, Size, and Perturbation , 1986 .

[52]  R. Ulanowicz An hypothesis on the development of natural communities. , 1980, Journal of theoretical biology.

[53]  R. W. Sheldon,et al.  The Size Distribution of Particles in the OCEAN1 , 1972 .

[54]  John Pastor,et al.  Dynamics of nutrient cycling and food webs , 1992 .

[55]  A. Osawa,et al.  Allometric Theory Explains Self‐Thinning Relationships of Mountain Beech and Red Pine , 1993 .

[56]  M. Straškraba,et al.  A mechanistic model of the adaptation of phytoplankton photosynthesis , 1993 .

[57]  Sven Erik Jørgensen,et al.  Integration of Ecosystem Theories: A Pattern , 1992, Ecology & Environment.

[58]  B. C. Patten Environs: Relativistic Elementary Particles for Ecology , 1982, The American Naturalist.

[59]  Bernard C. Patten,et al.  ENERGY CYCLING IN THE ECOSYSTEM , 1985 .

[60]  L. Pomeroy The Ocean's Food Web, A Changing Paradigm , 1974 .

[61]  J. G. Field,et al.  General allometric equations for rates of nutrient uptake, ingestion, and respiration in plankton organisms , 1989 .

[62]  Hana Šantr,et al.  On the relationship between specific respiration activity and microbial biomass in soils , 1991 .

[63]  John L. Harper,et al.  Population Biology of Plants. , 1978 .

[64]  A. I. Zotin Bioenergetic Trends of Evolutionary Progress of Organisms , 1985 .

[65]  B. C. Patten,et al.  Effects of Watershed Perturbation on Stream Potassium and Calcium Dynamics , 1979 .

[66]  S. Carpenter,et al.  Plankton Community Structure and Limnetic Primary Production , 1984, The American Naturalist.

[67]  Wolfgang Wieser,et al.  Effects of Temperature on Ectothermic Organisms , 1973, Springer Berlin Heidelberg.

[68]  Bernard C. Patten,et al.  The Problem of Nontrophic Processes in Trophic Ecology: Toward a Network Unfolding Solution , 1993 .

[69]  H. Baumert,et al.  Theory of the upper limit to phytoplankton production per unit area in natural waters , 1983 .

[70]  D. Scavia,et al.  Phosphorus Release Patterns and the Effects of Reproductive Stage and Ecdysis in Daphnia magna , 1982 .

[71]  Antonio Lima-de-Faria,et al.  Evolution without selection : form and function by autoevolution , 1988 .

[72]  C. S. Holling The functional response of invertebrate predators to prey density , 1966 .

[73]  Sven Erik Jørgensen,et al.  Exergy and Ecology , 1992 .

[74]  A. C. Economos On structural theories of basal metabolic rate. , 1979, Journal of theoretical biology.

[75]  R. Ulanowicz,et al.  Life and the production of entropy , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[76]  Sven Erik Jørgensen,et al.  Ecosystems emerging: 1. conservation , 1997 .

[77]  C. H. Pharo,et al.  Mineral Cycling in Southeastern Ecosystems. , 1978 .

[78]  S. Hemmingsen,et al.  Energy metabolism as related to body size and respiratory surfaces, and its evolution , 1960 .

[79]  R. Sterner The Role of Grazers in Phytoplankton Succession , 1989 .

[80]  B. Rothschild Dynamics of marine fish populations , 1987 .

[81]  B. C. Patten,et al.  On the Quantitative Dominance of Indirect Effects in Ecosystems , 1983 .

[82]  L. Johnson The Thermodynamic Origin of Ecosystems , 1981 .

[83]  R. Ulanowicz Growth and development : ecosystems phenomenology , 1988 .

[84]  F. Rigler,et al.  The Functioning of Freshwater Ecosystems , 1981 .

[85]  H. Danks Insect dormancy: an ecological perspective. , 1987 .

[86]  Noshir Contractor,et al.  Complexity: The emerging science at the edge of order and chaos: Journal of Communication , 1994 .

[87]  Eric H. Christiansen,et al.  Earth's dynamic systems : instructor's manual and test bank, to accompany , 1992 .

[88]  Raymond L. Lindeman The trophic-dynamic aspect of ecology , 1942 .

[89]  L. Walford,et al.  Bioenergetics and Growth , 1947 .

[90]  J. G. Field,et al.  The Ecological Role of Water-Column Microbes in the Sea* , 1983 .

[91]  W. G. Sprules,et al.  Size distribution of pelagic particles in lakes , 1983 .

[92]  V. Novotný,et al.  Habitat Preferences, Distribution and Seasonality of the Butterflies (Lepidoptera, Papilionoidea) in a Montane Tropical Rain Forest, Vietnam , 1993 .

[93]  M. Straškraba,et al.  Size Dependence of Biomass Spectra and Population Density I. The Effects of Size Scales and Size Intervals , 1998 .

[94]  Professor Dr. Herbert Precht,et al.  Temperature and Life , 1973, Springer Berlin Heidelberg.

[95]  T. T. Bannister Quantitative description of steady state, nutrient‐saturated algal growth, including adaptation , 1979 .

[96]  Bernard C. Patten,et al.  First passage flows in ecological networks: measurement by input-output flow analysis , 1995 .

[97]  R Levins,et al.  DISCUSSION PAPER: THE QUALITATIVE ANALYSIS OF PARTIALLY SPECIFIED SYSTEMS , 1974, Annals of the New York Academy of Sciences.

[98]  R. Ulanowicz A generic simulation model for treating incomplete sets of data , 1989 .

[99]  J. Damuth Interspecific allometry of population density in mammals and other animals: the independence of body mass and population energy‐use , 1987 .

[100]  B. Hannon,et al.  The structure of ecosystems. , 1973, Journal of theoretical biology.

[101]  K. Šimek Bacterial Activity in a Reservoir Determined by Autoradiography and its Relationships to Phyto‐ and Zooplankton , 1986 .

[102]  F. Briand,et al.  Cybernetic mechanisms in lake plankton systems: how to control undersirable algae , 1978, Nature.

[103]  R. Tollrian,et al.  Density-dependent effects of prey defences , 2000, Oecologia.

[104]  Paul Davies,et al.  The cosmic blueprint , 1988 .

[105]  H. Selye The Stress of Life , 1958 .

[106]  A. Dalcher,et al.  A Simple Biosphere Model (SIB) for Use within General Circulation Models , 1986 .

[107]  K. Šimek,et al.  Possible food chain relationships between bacterioplankton, protozoans, and cladocerans in a reservoir , 1990 .

[108]  J. Imberger Physical processes in lakes and oceans , 1998 .

[109]  J. Hejzlar,et al.  The Effect of Reservoirs on Phosphorus Concentration , 1995 .

[110]  A. D. Bazykin Analysis of ecological systems: State-of-the-art in ecological modelling: William K. Lauenroth, Gaylord V. Skogerboe and Marshall Flug (Editors). Developments in Environmental Modelling, 5. Elsevier, Amsterdam, 1983. 992 pp., Dfl. 320.00. ISBN 0-444-42179-3 , 1986 .

[111]  Bernard C. Patten,et al.  Ecology's AWFUL theorem : sustaining sustainability , 1998 .

[112]  R. Mulholland,et al.  Ecological stability: an information theory viewpoint. , 1976, Journal of theoretical biology.

[113]  B. Shelp,et al.  Photorespiration and Oxygen Inhibition of Photosynthesis in Chlorella pyrenoidosa. , 1980, Plant physiology.

[114]  M. Feibicke,et al.  Nitrogen Metabolism in Ecosystems—A New Approach , 1992 .

[115]  D. J. Stewart,et al.  Biomass size spectrum of the Lake Michigan pelagic food web , 1991 .

[116]  E. Charnov Optimal foraging, the marginal value theorem. , 1976, Theoretical population biology.

[117]  Alexey Voinov,et al.  A minimal model of eutrophication in freshwater ecosystems , 1984 .

[118]  Ulrich Sommer,et al.  The PEG-model of seasonal succession of planktonic events in fresh waters , 1986, Archiv für Hydrobiologie.

[119]  Robert E. Ulanowicz,et al.  Mathematical Models in Biological Oceanography. , 1984 .