Circulant preconditioners for Toeplitz matrices with piecewise continuous generating functions

The authors consider the solution of n-by-n Toeplitz systems T[sub n]x = b by preconditioned conjugate gradient methods. The preconditioner C[sub n] is the T. Chan circulant preconditioner, which is defined to be the circulant matrix that minimizes [parallel]B[sub n] - T[sub n][parallel][sub F] over all circulant matrices B[sub n]. For Toeplitz matrices generated by positive 2[pi]-periodic continuous functions, they have shown earlier that the spectrum of the preconditioned system C[sup [minus]1][sub n]T[sub n] is clustered around 1 and hence the convergence rate of the preconditioned system is superlinear. However, in this paper, they show that if instead the generating function is only piecewise continuous, then for all [epsilon] sufficiently small, there are O(log n) eigenvalues of C[sup [minus]1][sub n]T[sub n] that lie outside the interval (1 - [epsilon], 1 + [epsilon]). In particular, the spectrum of C[sup [minus]1][sub n]T[sub n] cannot be clustered around 1. Numerical examples are given to verify that the convergence rate of the method is no longer superlinear in general. 20 refs.

[1]  Raymond H. Chan,et al.  Jackson's theorem and circulant preconditioned Toeplitz systems , 1992 .

[2]  R. Chan Toeplitz Preconditioners for Toeplitz Systems with Nonnegative Generating Functions , 1991 .

[3]  W. Rudin Principles of mathematical analysis , 1964 .

[4]  G. Strang,et al.  Toeplitz equations by conjugate gradients with circulant preconditioner , 1989 .

[5]  Eugene E. Tyrtyshnikov,et al.  Optimal and Superoptimal Circulant Preconditioners , 1992, SIAM J. Matrix Anal. Appl..

[6]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[7]  G. Strang A proposal for toeplitz matrix calculations , 1986 .

[8]  Thomas Huckle,et al.  Circulant and Skewcirculant Matrices for Solving Toeplitz Matrix Problems , 1992, SIAM J. Matrix Anal. Appl..

[9]  R. Chan,et al.  The circulant operator in the banach algebra of matrices , 1991 .

[10]  E. Cheney Introduction to approximation theory , 1966 .

[11]  Raymond H. Chan,et al.  The spectra of super-optimal circulant preconditioned Toeplitz systems , 1991 .

[12]  Z. Nehari On Bounded Bilinear Forms , 1957 .

[13]  R. H. Chan The spectrum of a family of circulant preconditioned Toeplitz systems , 1989 .

[14]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[15]  L. Trefethen Approximation theory and numerical linear algebra , 1990 .

[16]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .

[17]  W. Gragg,et al.  Superfast solution of real positive definite toeplitz systems , 1988 .

[18]  R. Chan,et al.  Circulant preconditioners constructed from kernels , 1992 .

[19]  Raymond H. Chan,et al.  Fast Iterative Solvers for Toeplitz-Plus-Band Systems , 1993, SIAM J. Sci. Comput..

[20]  C.-C. Jay Kuo,et al.  Design and analysis of Toeplitz preconditioners , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[21]  M. Tismenetsky,et al.  A decomposition of Toeplitz matrices and optimal circulant preconditioning , 1991 .