How to optimize proof-search in modal logics: new methods of proving redundancy criteria for sequent calculi

We present a bottom-up decision procedure for propositional modal logic K based on the inverse method. The procedure is based on the “inverted” version of a sequent calculus. To restrict the search space, we prove a number of redundancy criteria for derivations in the sequent calculus. We introduce a new technique of proving redundancy criteria, based on the analysis of tableau-based derivations in K. Moreover, another new technique is based on so-called traces. A new search with a strong notion of subsumption. This technique is based on so-called traces. A new formalization of the inverse method in the form of a path calculus considerably simplifies all proofs as compared to the previously published presentations of the inverse method. Experimental results demonstrate that our method is competitive with many state-of-the-art implementations of K.

[1]  Ullrich Hustadt,et al.  On Evaluating Decision Procedures for Modal Logics , 1997 .

[2]  Tanel Tammet,et al.  A Resolution Theorem Prover for Intuitonistic Logic , 1996, CADE.

[3]  A. Voronkov K? : A theorem prover for K , 1999 .

[4]  Gerhard Jäger,et al.  A Logics Workbench , 1996, AI Commun..

[5]  Diego Calvanese,et al.  Reasoning in Expressive Description Logics , 2001, Handbook of Automated Reasoning.

[6]  Louis F. Goble,et al.  Gentzen systems for modal logic , 1974, Notre Dame J. Formal Log..

[7]  Andrei Voronkov KK: a theorem prover for K , 1999, CADE.

[8]  Fausto Giunchiglia,et al.  Building Decision Procedures for Modal Logics from Propositional Decision Procedure - The Case Study of Modal K , 1996, CADE.

[9]  Renate A. Schmidt,et al.  Resolution is a Decision Procedure for Many Propositional Modal Logics , 1996, Advances in Modal Logic.

[10]  Ian Horrocks,et al.  Using an Expressive Description Logic: FaCT or Fiction? , 1998, KR.

[11]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[12]  Harald Ganzinger,et al.  Resolution Theorem Proving , 2001, Handbook of Automated Reasoning.

[13]  Projektgruppe WINOPostfa A Terminological Knowledge Representation System with Complete Inference Algorithms , 1991 .

[14]  Andrei Voronkov A proof-search method for the first-order logic , 1988, Conference on Computer Logic.

[15]  Ian Horrocks,et al.  Optimising Tableaux Decision Procedures For Description Logics , 1997 .

[16]  Ian Horrocks,et al.  An Analysis of Empirical Testing for Modal Decision Procedures , 2000, Log. J. IGPL.

[17]  Armando Tacchella,et al.  *SAT System Description , 1999, Description Logics.

[18]  Andrei Voronkov,et al.  Theorem Proving in Non-Standard Logics Based on the Inverse Method , 1992, CADE.

[19]  Fausto Giunchiglia,et al.  More Evaluation of Decision Procedures for Modal Logics , 1998, KR.

[20]  Fausto Giunchiglia,et al.  A SAT-based Decision Procedure for ALC , 1996, KR.

[21]  Volker Haarslev,et al.  Implementing an ALCRP(D) ABox Reasoner - Progress Report , 1998, Description Logics.

[22]  Albert Rubio,et al.  Paramodulation-Based Theorem Proving , 2001, Handbook of Automated Reasoning.

[23]  Grigori Mints,et al.  Resolution Strategies for the Intuitionistic Logic , 1993, NATO ASI CP.

[24]  Christoph Weidenbach,et al.  SPASS & FLOTTER Version 0.42 , 1996, CADE.

[25]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[26]  Grigori Mints,et al.  Transfer of Sequent Calculus Strategies to Resolution for S4 , 1996 .

[27]  Grigori Mints,et al.  Resolution calculus for the first order linear logic , 1993, J. Log. Lang. Inf..

[28]  Andrei Voronkov,et al.  Equality Elimination for the Tableau Method , 1996, DISCO.

[29]  Ullrich Hustadt,et al.  On Evaluating Decision Procedures for Modal Logic , 1997, IJCAI.

[30]  Peter Balsiger,et al.  Logics Workbench 1.0 , 1998, TABLEAUX.

[31]  Gerhard Gentzen,et al.  Investigations into Logical Deduction , 1970 .

[32]  Andrei Voronkov,et al.  The Inverse Method , 2001, Handbook of Automated Reasoning.

[33]  Peter F. Patel-Schneider,et al.  FaCT and DLP , 1998, TABLEAUX.

[34]  Lincoln A. Wallen,et al.  Automated deduction in nonclassical logics , 1990 .

[35]  Peter F. Patel-Schneider,et al.  DLP System Description , 1998, Description Logics.