Atomic Layer Etching of HfO2 Using Sequential, Self-Limiting Thermal Reactions with Sn(acac)2 and HF

The atomic layer etching (ALEt) of HfO2 was performed using sequential, self-limiting thermal reactions with tin(II) acetylacetonate (Sn(acac)2) and HF as the reactants. The HF source was a HF-pyridine solution. The etching of HfO2 was linear with atomic level control versus number of Sn(acac)2 and HF reaction cycles. The HfO2 ALEt was measured at temperatures from 150–250◦C. Quartz crystal microbalance (QCM) measurements determined that the mass change per cycle (MCPC) increased with temperature from −6.7 ng/(cm2 cycle) at 150◦C to −11.2 ng/(cm2 cycle) at 250◦C. These MCPC values correspond to etch rates from 0.070 A/cycle at 150◦C to 0.117 A/cycle at 250◦C. X-ray reflectivity analysis confirmed the linear removal of HfO2 and measured an HfO2 ALEt etch rate of 0.11 A/cycle at 200◦C. Fourier transform infrared (FTIR) spectroscopy measurements also observed HfO2 ALEt using the infrared absorbance of the Hf-O stretching vibration. FTIR analysis also revealed absorbance features consistent with HfF4 or HfFx surface species as a reaction intermediate. The HfO2 etching is believed to follow the reaction: HfO2 + 4Sn(acac)2 + 4HF → Hf(acac)4 + 4SnF(acac) + 2H2O. In the proposed reaction mechanism, Sn(acac)2 donates acac to the substrate to produce Hf(acac)4. HF allows SnF(acac) and H2O to leave as reaction products. The thermal ALEt of many other metal oxides, as well as metal nitrides, phosphides, sulfides and arsenides, should be possible by a similar mechanism. © The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. [DOI: 10.1149/2.0041506jss] All rights reserved.

[1]  J. Margrave,et al.  Mass spectrometric studies at high temperatures. Part 24.—Thermodynamics of vaporization of SnF2 and PbF2 and the Dissociation energies of SnF and PbF , 1968 .

[2]  H. Sakaue,et al.  Atomic Layer Controlled Digital Etching of Silicon , 1990 .

[3]  R. Sievers,et al.  Thermogravimetric studies of metal β-diketonates , 1967 .

[4]  R. Chau,et al.  A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging , 2007, 2007 IEEE International Electron Devices Meeting.

[5]  J. Elam,et al.  Design and implementation of an integral wall-mounted quartz crystal microbalance for atomic layer deposition. , 2012, The Review of scientific instruments.

[6]  Chen Li,et al.  Effect of the chamber wall on fluorocarbon-assisted atomic layer etching of SiO2 using cyclic Ar/C4F8 plasma. , 2014, Journal of vacuum science & technology. A, Vacuum, surfaces, and films : an official journal of the American Vacuum Society.

[7]  R. C. Mehrotra,et al.  Metal β-diketonates and allied derivatives , 1978 .

[8]  Jane P. Chang,et al.  Development of hafnium based high-k materials—A review , 2011 .

[9]  G. Rossetto,et al.  Volatile hafnium(IV) compounds with beta-diketonate and cyclopentadienyl derivatives , 2008 .

[10]  Mikko Ritala,et al.  Atomic layer deposition chemistry: recent developments and future challenges. , 2003, Angewandte Chemie.

[11]  J. Park,et al.  Layer by Layer Etching of the Highly Oriented Pyrolythic Graphite by Using Atomic Layer Etching , 2011 .

[12]  Eduard A. Cartier,et al.  Materials characterization of ZrO2–SiO2 and HfO2–SiO2 binary oxides deposited by chemical solution deposition , 2001 .

[13]  P. Harrison,et al.  Derivatives of divalent germanium, tin, and lead. Part V. Bis-(pentane-2,4-dionato)-, bis(1,1,1-trifluoropentane-2,4-dionato)-, and bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato)-tin(II) , 1975 .

[14]  D. Lee,et al.  Atomic Layer Etching of Si(100) and Si(111) Using Cl2 and Ar Neutral Beam , 2005 .

[15]  Yasuhiro Yamamoto,et al.  Digital etching of GaAs: New approach of dry etching to atomic ordered processing , 1990 .

[16]  Denis Flandre,et al.  Effective mobility in FinFET structures with HfO2 and SiON gate dielectrics and TaN gate electrode , 2005 .

[17]  G. Gebara,et al.  Plasma-Induced Damage in High-$k$/Metal Gate Stack Dry Etch , 2006, IEEE Electron Device Letters.

[18]  Alan W. Weimer,et al.  Atomic layer deposition of ultrathin and conformal Al2O3 films on BN particles , 2000 .

[19]  Young Woon Kim,et al.  Atomic layer etching of ultra-thin HfO2 film for gate oxide in MOSFET devices , 2009 .

[20]  G. Ghibaudo,et al.  A compact drain current model of short-channel cylindrical gate-all-around MOSFETs , 2009 .

[21]  A. Barron,et al.  Substituent effects on the volatility of metal ?-diketonates , 2000 .

[22]  V. Cosnier,et al.  HfO2–SiO2 interface in PVD coatings , 2001 .

[23]  D. J. Economou,et al.  Molecular dynamics simulation of atomic layer etching of silicon , 1995 .

[24]  S. Tayyari,et al.  Vibrational assignment of acetylacetone. , 2000, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[25]  Orbital magnetization in crystalline solids: Multi-band insulators, Chern insulators, and metals , 2005, cond-mat/0512142.

[26]  N. Collaert,et al.  Electrical characterization and design optimization of FinFETs with a TiN/HfO2 gate stack , 2009 .

[27]  Robert D. Shannon,et al.  Refractive Index and Dispersion of Fluorides and Oxides , 2002 .

[28]  L. Khomenkova Analysis of PL spectrum shape of Si-based materials as a tool for determination of Si crystallites׳ distribution , 2014 .

[29]  B. Park,et al.  Atomic layer etching of (100)/(111) GaAs with chlorine and low angle forward reflected Ne neutral beam , 2008 .

[30]  L. N. Zelenina,et al.  Thermal properties of hafnium(IV) and zirconium(IV) β-diketonates , 2008 .

[31]  E. Vogli,et al.  Feasibility of atomic layer etching of polymer material based on sequential O2 exposure and Ar low-pressure plasma-etching , 2013 .

[32]  D. H. Dugre,et al.  Infrared Spectra of Some Group IV Halides , 1961 .

[33]  T. Matsuura,et al.  Atomic-layer etching of Ge using an ultraclean ECR plasma , 1997 .

[34]  Steven M. George,et al.  Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition , 2002 .

[35]  Steven J. Plimpton,et al.  Molecular dynamics simulations of low-energy (25–200 eV) argon ion interactions with silicon surfaces: Sputter yields and product formation pathways , 1998 .

[36]  J. Robertson High dielectric constant oxides , 2004 .

[37]  Jane P. Chang,et al.  Perspectives in nanoscale plasma etching: what are the ultimate limits? , 2011 .

[38]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[39]  Mark J. Kushner,et al.  Plasma atomic layer etching using conventional plasma equipment , 2009 .

[40]  P. Carstens,et al.  A thermogravimetric study of the fluorination of zirconium and hafnium oxides with anhydrous hydrogen fluoride gas , 2012 .

[41]  S. Shingubara,et al.  Digital etching study and fabrication of fine Si lines and dots , 1993 .

[42]  Je-Hun Lee,et al.  Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition , 2002 .

[43]  Jong-Hyun Ahn,et al.  Atomic layer etching of graphene for full graphene device fabrication , 2012 .

[44]  Y. Aoyagi,et al.  Control of the etching reaction of digital etching using tunable UV laser irradation , 1994 .

[45]  S. George,et al.  Atomic layer etching of Al2O3 using sequential, self-limiting thermal reactions with Sn(acac)2 and hydrogen fluoride. , 2015, ACS nano.

[46]  J. Yates,et al.  Transmission infrared spectroscopy of high area solid surfaces. A useful method for sample preparation , 1992 .

[47]  Tae-Woo Kim,et al.  Atomic layer etching of InP using a low angle forward reflected Ne neutral beam , 2006 .

[48]  E. Berg,et al.  Vapor pressure-temperature data for various metal β-diketone chelates , 1965 .

[49]  S. Banerjee,et al.  Atomic layer etching of Al2O3 using BCl3/Ar for the interface passivation layer of III-V MOS devices , 2013 .

[50]  G. Yeom,et al.  Precise Depth Control and Low-Damage Atomic-Layer Etching of HfO2 using BCl3 and Ar Neutral Beam , 2008 .

[51]  D. J. Economou,et al.  Realization of atomic layer etching of silicon , 1996 .