Development of Ir based tool for friction stir welding of high temperature materials

Abstract A friction stir welding (FSW) tool with high strength and high wear resistance at elevated temperature is needed to perform FSW of high temperature materials. The purpose of this study is to develop a welding tool suited for FSW of high temperature materials. It has been clarified that Ir is little oxidised at elevated temperatures and that the addition of Re within the solubility limit to Ir increases the recrystallisation temperature, the high temperature strength and the high temperature hardness of the Ir alloy. SUS304 stainless steel was successfully friction stir welded by an Ir–10 at‐%Re welding tool without significant wear.

[1]  Masao Ushio,et al.  Microstructures and mechanical properties of friction stir welds of 60% Cu–40% Zn copper alloy , 2004 .

[2]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[3]  H. Kokawa,et al.  Microstructural evolution of ultrahigh carbon steel during friction stir welding , 2007 .

[4]  T. Nelson,et al.  Recrystallization in type 304L stainless steel during friction stirring , 2005 .

[5]  Hiroyuki Kokawa,et al.  Microstructural characteristics and mechanical properties of Ti-6Al-4V friction stir welds , 2008 .

[6]  Y. Chen,et al.  Friction stir processing of 316L stainless steel plate , 2009 .

[7]  Hidetoshi Fujii,et al.  Friction stir welding of carbon steels , 2006 .

[8]  Tomas Öberg,et al.  Improved process stability during friction stir welding of 5 cm thick copper canisters through shoulder geometry and parameter studies , 2009 .

[9]  K. Nogi,et al.  Friction stir welding of ultrafine grained plain low-carbon steel formed by the martensite process , 2006 .

[10]  Yutaka S. Sato,et al.  Evaluation of microstructure and properties in friction stir welded superaustenitic stainless steel , 2009 .

[11]  B. B. Grimmett,et al.  Friction stir welding studies on mild steel , 2003 .

[12]  Ichiro Okura Application of Aluminum Alloys to Bridges and Joining Technique ( Technical Information : [Part III] Applications of New Welding and Joining Processes to Manufacturing Fields) , 2003 .

[13]  G. Grant,et al.  Friction stir spot welding of DP780 carbon steel , 2010 .

[14]  T. J. Lienert,et al.  Improved weldability diagram for pulsed laser welded austenitic stainless steels , 2003 .

[15]  E. D. Nicholas,et al.  Feasibility of friction stir welding steel , 1999 .

[16]  久宣 岡村,et al.  摩擦攪拌接合(FSW)の開発状況と適用上の課題 , 2003 .

[17]  J. Engel,et al.  Friction Stir Welding of Thick-Walled Aluminum Pressure Vessels Friction Stir Welding of Thick-Walled Aluminum Pressure Vessels , 2008 .

[18]  Christine Connolly,et al.  Industrial Robot : An International Journal Friction spot joining in aluminium car bodies , 2016 .

[19]  C. Sorensen,et al.  Grade Development of Polycrystalline Cubic Boron Nitride for Friction Stir Processing of Ferrous Alloys , 2003 .

[20]  K. Nogi,et al.  High Speed–High Quality Friction Stir Welding of Austenitic Stainless Steel , 2009 .

[21]  N. Enzinger,et al.  Microstructural and mechanical characterisation of friction stir welded 15-5PH steel , 2009 .

[22]  Alvin M. Strauss,et al.  Misalignment detection and enabling of seam tracking for friction stir welding , 2009 .

[23]  J. W. Wilson,et al.  Behaviour and Properties of Refractory Metals , 1965 .

[24]  A. Reynolds,et al.  Friction stir welding of DH36 steel , 2003 .

[25]  N. Tsuji,et al.  Friction stir welding of a high carbon steel , 2007 .