Almost sure well-posedness and scattering of the 3D cubic nonlinear Schr\"odinger equation

We study the random data problem for 3D, defocusing, cubic nonlinear Schrödinger equation in H x(R ) with s < 1 2 . First, we prove that the almost sure local well-posedness holds when 1 6 6 s < 1 2 in the sense that the Duhamel term belongs to H 1/2 x (R). Furthermore, we prove that the global well-posedness and scattering hold for randomized, radial, large data f ∈ H x(R3) when 37 < s < 1 2 . The key ingredient is to control the energy increment including the terms where the first order derivative acts on the linear flow, and our argument can lower down the order of derivative more than 1 2 . To our best knowledge, this is the first almost sure large data global result for this model.

[1]  Á. Bényi,et al.  On the Probabilistic Cauchy Theory of the Cubic Nonlinear Schrödinger Equation on Rd, d≥3 , 2014, 1405.7327.

[2]  S. Herr,et al.  On the Division Problem for the Wave Maps Equation , 2018, Annals of PDE.

[3]  Terence Tao,et al.  The cubic nonlinear Schr\"odinger equation in two dimensions with radial data , 2007, 0707.3188.

[4]  B. Dodson Global well-posedness for the defocusing, cubic nonlinear Schrödinger equation with initial data in a critical space , 2020, Revista Matemática Iberoamericana.

[5]  Bjoern Bringmann Almost sure scattering for the energy critical nonlinear wave equation , 2018, American Journal of Mathematics.

[6]  S. Herr,et al.  Transference of Bilinear Restriction Estimates to Quadratic Variation Norms and the Dirac-Klein-Gordon System , 2016, 1605.04882.

[7]  Monica Visan,et al.  The mass-critical nonlinear Schr\"odinger equation with radial data in dimensions three and higher , 2007, 0708.0849.

[8]  T. Tao,et al.  Ill-posedness for nonlinear Schrodinger and wave equations , 2003, math/0311048.

[9]  D. Tataru,et al.  Conserved energies for the cubic nonlinear Schrödinger equation in one dimension , 2018, Duke Mathematical Journal.

[10]  Benjamin Dodson,et al.  Global well-posedness and scattering for nonlinear Schrödinger equations with algebraic nonlinearity when $d = 2,3$ and $u_0$ is radial , 2019, Cambridge Journal of Mathematics.

[11]  W. Strauss,et al.  Decay and scattering of solutions of a nonlinear Schrödinger equation , 1978 .

[12]  N. Tzvetkov,et al.  Random data Cauchy theory for supercritical wave equations II: a global existence result , 2007, 0707.1448.

[13]  K. Nakanishi Energy Scattering for Nonlinear Klein–Gordon and Schrödinger Equations in Spatial Dimensions 1 and 2☆ , 1999 .

[14]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[15]  B. Dodson Global well-posedness and scattering for the defocusing, $L^{2}$-critical nonlinear Schrödinger equation when $d =3$ , 2009, 0912.2467.

[16]  H. Feichtinger Modulation Spaces on Locally Compact Abelian Groups , 2003 .

[17]  Jason Murphy Random data final-state problem for the mass-subcritical NLS in $L^2$ , 2017, Proceedings of the American Mathematical Society.

[18]  J. Bourgain,et al.  Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity , 1998 .

[19]  Cathleen S. Morawetz,et al.  Time decay for the nonlinear Klein-Gordon equation , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  Almost sure scattering for the one dimensional nonlinear Schr\"odinger equation , 2020, 2012.13571.

[21]  Peter Constantin,et al.  Local smoothing properties of dispersive equations , 1988 .

[22]  Yuzhao Wang,et al.  An L p -theory for almost sure local well-posedness of the nonlinear Schrödinger equations , 2018, Comptes Rendus Mathematique.

[23]  Yifei Wu,et al.  Large global solutions for nonlinear Schr\"odinger equations I, mass-subcritical cases , 2018, 1809.09831.

[24]  GLOBAL WELL POSEDNESS AND SCATTERING FOR THE DEFOCUSING , CUBIC NLS IN R 3 , 2012 .

[25]  R. Killip,et al.  The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher , 2008, 0804.1018.

[26]  K. Nakanishi,et al.  Randomized final-data problem for systems of nonlinear Schrödinger equations and the Gross–Pitaevskii equation , 2018, Mathematical Research Letters.

[27]  Baoxiang Wang,et al.  The global Cauchy problem for the NLS and NLKG with small rough data , 2007 .

[28]  Dispersive estimates for principally normal pseudodifferential operators , 2004, math/0401234.

[29]  J. Bourgain Periodic nonlinear Schrödinger equation and invariant measures , 1994 .

[30]  J. Ginibre,et al.  Smoothing properties and retarded estimates for some dispersive evolution equations , 1992 .

[31]  M. Visan,et al.  Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in R 1+4 , 2007 .

[32]  Almost sure scattering for the nonlinear Klein–Gordon equations with Sobolev critical power , 2020, Nonlinear Analysis.

[33]  B. Dodson Global well-posedness and scattering for the defocusing, L2-critical, nonlinear Schrödinger equation when d = 1 , 2016 .

[34]  N. Tzvetkov,et al.  Long time dynamics for the one dimensional non linear Schrödinger equation , 2010, 1002.4054.

[35]  A Sharp Condition for Scattering of the Radial 3D Cubic Nonlinear Schrödinger Equation , 2007, math/0703235.

[36]  N. Tzvetkov,et al.  Random data Cauchy theory for supercritical wave equations I: local theory , 2007, 0707.1447.

[37]  J. Bourgain Scattering in the energy space and below for 3D NLS , 1998 .

[38]  B. Dodson Global well-posedness and scattering for the focusing, cubic Schrödinger equation in dimension d=4 , 2019, Annales scientifiques de l'École normale supérieure.

[39]  J. Bourgain Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case , 1999 .

[40]  J. Brereton Almost sure local well-posedness for the supercritical quintic NLS , 2016, Tunisian Journal of Mathematics.

[41]  Luis Vega,et al.  Oscillatory integrals and regularity of dispersive equations , 1991 .

[42]  Dana Mendelson,et al.  Almost sure scattering for the 4D energy-critical defocusing nonlinear wave equation with radial data , 2017, American Journal of Mathematics.

[43]  H. Takaoka,et al.  Almost conservation laws and global rough solutions to a Nonlinear Schr , 2002, math/0203218.

[44]  F. Merle,et al.  Scattering for H^1/2 bounded solutions to the cubic, defocusing NLS in 3 dimensions , 2007, 0712.1834.

[45]  Zhao Li-feng,et al.  Isometric decomposition operators, function spaces Ep,qλ and applications to nonlinear evolution equations , 2006 .

[46]  Yifei Wu,et al.  Large Global Solutions for Nonlinear Schrödinger Equations II, Mass-Supercritical, Energy-Subcritical Cases , 2018, Communications in Mathematical Physics.

[47]  J. Holmer,et al.  Scattering for the non-radial 3D cubic nonlinear Schroedinger equation , 2007, 0710.3630.

[48]  'Arp'ad B'enyi,et al.  On the Probabilistic Cauchy Theory for Nonlinear Dispersive PDEs , 2018, Landscapes of Time-Frequency Analysis.

[49]  T. Tao,et al.  Endpoint Strichartz estimates , 1998 .

[50]  Herbert Koch,et al.  Well-posedness and scattering for the KP-II equation in a critical space , 2007, 0708.2011.

[51]  Timothy Candy Multi-scale bilinear restriction estimates for general phases , 2017, Mathematische Annalen.

[52]  J. Ginibre,et al.  Scattering theory in the energy space for a class of nonlinear Schrödinger equations , 1985 .

[53]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[54]  D. Tataru,et al.  Dispersive Equations and Nonlinear Waves: Generalized Korteweg–de Vries, Nonlinear Schrödinger, Wave and Schrödinger Maps , 2014 .

[55]  T. Cazenave,et al.  Some remarks on the nonlinear Schrödinger equation in the subcritical case , 1989 .

[56]  Y. Tsutsumi L$^2$-Solutions for Nonlinear Schrodinger Equations and Nonlinear Groups , 1985 .

[57]  T. Wol A sharp bilinear cone restriction estimate , 2001 .

[58]  Carlos E. Kenig,et al.  Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case , 2006 .

[59]  B. Dodson Global well-posedness and scattering for the defocusing, L2-critical, nonlinear Schrödinger equation when d = 1 , 2010, 1010.0040.

[60]  J. Colliander,et al.  Almost sure well-posedness of the cubic nonlinear Schr\ , 2009, 0904.2820.

[61]  Tadahiro Oh,et al.  On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities , 2017, Discrete & Continuous Dynamical Systems - A.

[62]  Jean Bourgain,et al.  On nonlinear Schrödinger equations , 1998 .

[63]  'Arp'ad B'enyi,et al.  Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on ℝ³ , 2017, Transactions of the American Mathematical Society, Series B.

[64]  Dana Mendelson,et al.  Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation , 2018, Advances in Mathematics.

[65]  Bjoern Bringmann Almost-sure scattering for the radial energy-critical nonlinear wave equation in three dimensions , 2018, 1804.09268.

[66]  Ting Zhang,et al.  Random Data Cauchy Theory for the Generalized Incompressible Navier–Stokes Equations , 2012 .

[67]  W. Zachary,et al.  Nonlinear Semigroups, Partial Differential Equations and Attractors , 1987 .

[68]  M. Visan The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions , 2005, math/0508298.

[69]  Terence Tao,et al.  Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions , 2007 .

[70]  N. Tzvetkov Construction of a Gibbs measure associated to the periodic Benjamin–Ono equation , 2006, math/0610626.

[71]  Benjamin Dodson,et al.  Global well-posedness and scattering for the mass critical nonlinear Schr{\"o}dinger equation with mass below the mass of the ground state , 2011, 1104.1114.