Fluorescence guided resection and glioblastoma in 2015: A review

High‐grade gliomas represent a widely heterogeneous group of tumors, the most frequent of which is glioblastoma multiforme. Its annual incidence has risen over the last decades, particularly amongst elderly people. The actual standards of care allow for a 15‐month median survival rate for WHO grade IV gliomas. As recurrence occurs in more than 85% of patients at the surgical margins, the initial resection extent is a cornerstone of disease control. Fluorescence guided resection (FGR) aims at increasing complete resections and, thus, local control. This technique uses 5‐aminolevulinic acid (5‐ALA), a natural intermediate substance in the heme‐porphyrin biosynthesis pathway, and a protoporphyrin IX (PpIX) precursor. PpIX is fluorescent under blue light exposure. Recent studies reported a significant increase in complete resections using FGR, which were associated with prolonged progression free survival, fewer reinterventions, and delayed neurological deterioration. Here, we depict the principles of this surgical technique, its actual outcomes, and future developments. Lasers Surg. Med. 47:441–451, 2015. © 2015 Wiley Periodicals, Inc.

[1]  A. E. Saarnak,et al.  5-Aminolevulinic Acid Induced Endogenous Porphyrin Fluorescence in 9L and C6 Brain Tumours and in the Normal Rat Brain , 1998, Acta Neurochirurgica.

[2]  Kathleen Seidel,et al.  Gross total resection rates in contemporary glioblastoma surgery: results of an institutional protocol combining 5-aminolevulinic acid intraoperative fluorescence imaging and brain mapping. , 2012, Neurosurgery.

[3]  D. Kessel,et al.  Plasma levels of protoporphyrin IX in humans after oral administration of 5-aminolevulinic acid. , 1997, Journal of photochemistry and photobiology. B, Biology.

[4]  N. J. Brown,et al.  The influence of hypoxia and pH on aminolaevulinic acid-induced photodynamic therapy in bladder cancer cells in vitro. , 1998, British Journal of Cancer.

[5]  Giuseppe Lombardi,et al.  5-aminolevulinic acid (5-ALA) fluorescence guided surgery of high-grade gliomas in eloquent areas assisted by functional mapping. Our experience and review of the literature , 2013, Acta Neurochirurgica.

[6]  Y. Kajimoto,et al.  Endoscopic identification and biopsy sampling of an intraventricular malignant glioma using a 5-aminolevulinic acid-induced protoporphyrin IX fluorescence imaging system. Technical note. , 2007, Journal of neurosurgery.

[7]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.

[8]  R. Mirimanoff,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[9]  J. Olson,et al.  Guidelines for the treatment of newly diagnosed glioblastoma: introduction , 2008, Journal of Neuro-Oncology.

[10]  Isabelle Camby,et al.  Present and potential future issues in glioblastoma treatment , 2006, Expert review of anticancer therapy.

[11]  H. Steiger,et al.  Fluorescence-guided surgery with 5-aminolevulinic acid for resection of brain tumors in children—a technical report , 2014, Acta Neurochirurgica.

[12]  Thomas Pongratz,et al.  ALA and malignant glioma: fluorescence-guided resection and photodynamic treatment. , 2007, Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer.

[13]  Francesco Acerbi,et al.  Is fluorescein-guided technique able to help in resection of high-grade gliomas? , 2014, Neurosurgical focus.

[14]  Walter Stummer,et al.  Favorable outcome in the elderly cohort treated by concomitant temozolomide radiochemotherapy in a multicentric phase II safety study of 5-ALA , 2011, Journal of Neuro-Oncology.

[15]  M. Idoate,et al.  Pathological characterization of the glioblastoma border as shown during surgery using 5‐aminolevulinic acid‐induced fluorescence , 2011, Neuropathology : official journal of the Japanese Society of Neuropathology.

[16]  D. Barone,et al.  Image guided surgery for the resection of brain tumours. , 2014, The Cochrane database of systematic reviews.

[17]  Henry Brem,et al.  Independent association of extent of resection with survival in patients with malignant brain astrocytoma. , 2009, Journal of neurosurgery.

[18]  Gabriele Schackert,et al.  Resection and survival in glioblastoma multiforme: an RTOG recursive partitioning analysis of ALA study patients. , 2008, Neuro-oncology.

[19]  J. Slof,et al.  Observational, retrospective study of the effectiveness of 5-aminolevulinic acid in malignant glioma surgery in Spain (The VISIONA study) , 2014 .

[20]  Jochen Herms,et al.  5‐Aminolevulinic Acid‐induced Protoporphyrin IX Levels in Tissue of Human Malignant Brain Tumors , 2010, Photochemistry and photobiology.

[21]  G von Campe,et al.  5-aminolevulinic acid induced protoporphyrin IX fluorescence in high-grade glioma surgery: a one-year experience at a single institutuion. , 2008, Swiss medical weekly.

[22]  Sachio Suzuki,et al.  Fluorescence-guided resection of metastatic brain tumors using a 5-aminolevulinic acid-induced protoporphyrin IX: pathological study , 2007, Brain Tumor Pathology.

[23]  J. Henson,et al.  Brain Tumor Imaging in Clinical Trials , 2008, American Journal of Neuroradiology.

[24]  S. Preston‐Martin,et al.  A population‐based description of glioblastoma multiforme in Los Angeles County, 1974–1999 , 2005, Cancer.

[25]  H. Steiger,et al.  Enhancing the effect of 5-aminolevulinic acid based photodynamic therapy in human meningioma cells. , 2014, Photodiagnosis and photodynamic therapy.

[26]  A. Ehrhardt,et al.  Use of 5-ALA fluorescence guided endoscopic biopsy of a deep-seated primary malignant brain tumor. , 2011, Journal of Neurosurgery.

[27]  Mamta Khurana,et al.  Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements. , 2010, Journal of biomedical optics.

[28]  J. Zo,et al.  Reduced local recurrence of a single brain metastasis through microscopic total resection. , 2009, Journal of neurosurgery.

[29]  M. Matsumae,et al.  Impact of the combination of 5-aminolevulinic acid-induced fluorescence with intraoperative magnetic resonance imaging-guided surgery for glioma. , 2011, World neurosurgery.

[30]  N. J. Brown,et al.  Comparison of high- vs low-dose 5-aminolevulinic acid for photodynamic therapy of Barrett’s esophagus , 2004, Surgical Endoscopy And Other Interventional Techniques.

[31]  Xiaoyao Fan,et al.  Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker. , 2011, Journal of neurosurgery.

[32]  N. Brown,et al.  Aminolaevulinic acid-induced photodynamic therapy: cellular responses to glucose starvation , 2002, British Journal of Cancer.

[33]  R. Keep,et al.  Role of PEPT2 in the Choroid Plexus Uptake of Glycylsarcosine and 5-Aminolevulinic Acid: Studies in Wild-Type and Null Mice , 2004, Pharmaceutical Research.

[34]  J. Jääskeläinen,et al.  Debulking or biopsy of malignant glioma in elderly people – a randomised study , 2003, Acta Neurochirurgica.

[35]  Walter Stummer,et al.  The importance of surgical resection in malignant glioma , 2009, Current opinion in neurology.

[36]  L. Morgan,et al.  The epidemiology of glioma in adults: a "state of the science" review. , 2015, Neuro-oncology.

[37]  F. Zanella,et al.  Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. , 2006, The Lancet. Oncology.

[38]  D. Prayer,et al.  5‐Aminolevulinic acid is a promising marker for detection of anaplastic foci in diffusely infiltrating gliomas with nonsignificant contrast enhancement , 2010, Cancer.

[39]  H. Steiger,et al.  Endoscopic-assisted visualization of 5-aminolevulinic acid-induced fluorescence in malignant glioma surgery: a technical note. , 2014, World neurosurgery.

[40]  B. Kleinschmidt-DeMasters,et al.  Clinical and molecular characteristics of congenital glioblastoma. , 2012, Neuro-oncology.

[41]  A. Omuro,et al.  Current Role of Anti-Angiogenic Strategies for Glioblastoma , 2014, Current Treatment Options in Oncology.

[42]  J. Slof,et al.  Observational, retrospective study of the effectiveness of 5-aminolevulinic acid in malignant glioma surgery in Spain (The VISIONA study). , 2014, Neurologia.

[43]  M. Ritsch-Marte,et al.  mTHPC-mediated Photodynamic Diagnosis of Malignant Brain Tumors¶ , 2001, Photochemistry and photobiology.

[44]  J. Meixensberger,et al.  The use of 5-aminolevulinic acid fluorescence guidance in resection of pediatric brain tumors , 2013, Child's Nervous System.

[45]  J. Slof,et al.  Análisis coste-efectividad de la cirugía del glioma maligno guiada por fluorescencia con ácido 5-aminolevulínico , 2015 .

[46]  P. Cabre,et al.  A case of late-onset multiple sclerosis mimicking glioblastoma and displaying intraoperative 5-aminolevulinic acid fluorescence , 2012, Acta Neurochirurgica.

[47]  J. Honegger,et al.  Maximizing the extent of resection and survival benefit of patients in glioblastoma surgery: high-field iMRI versus conventional and 5-ALA-assisted surgery. , 2014, European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology.

[48]  Sachio Suzuki,et al.  Histological examination of false positive tissue resection using 5-aminolevulinic acid-induced fluorescence guidance. , 2007, Neurologia medico-chirurgica.

[49]  Kevin Petrecca,et al.  Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma , 2012, Journal of Neuro-Oncology.

[50]  R. Díez-Valle,et al.  Prognostic value of ventricular wall fluorescence during 5-aminolevulinic-guided surgery for glioblastoma , 2012, Acta Neurochirurgica.

[51]  J. Slof,et al.  Cost-effectiveness of 5-aminolevulinic acid-induced fluorescence in malignant glioma surgery. , 2015, Neurologia.

[52]  Veit Rohde,et al.  EXTENT OF RESECTION AND SURVIVAL IN GLIOBLASTOMA MULTIFORME: IDENTIFICATION OF AND ADJUSTMENT FOR BIAS , 2008, Neurosurgery.

[53]  S. Eljamel Photodynamic applications in brain tumors: a comprehensive review of the literature. , 2010, Photodiagnosis and photodynamic therapy.

[54]  M. Eljamel,et al.  Fluorescence image-guided surgery of brain tumors: explained step-by-step. , 2008, Photodiagnosis and photodynamic therapy.

[55]  J Moan,et al.  5‐Aminolevulinic acid‐based photodynamic therapy , 1997, Cancer.

[56]  H. Steiger,et al.  The impact of improved treatment strategies on overall survival in glioblastoma patients , 2013, Acta Neurochirurgica.

[57]  J. Barnholtz-Sloan,et al.  The epidemiology of glioma in adults: a "state of the science" review. , 2014, Neuro-oncology.

[58]  Neda Haj-Hosseini,et al.  Optical touch pointer for fluorescence guided glioblastoma resection using 5‐aminolevulinic acid , 2010, Lasers in surgery and medicine.

[59]  Frederic Leblond,et al.  System and methods for wide-field quantitative fluorescence imaging during neurosurgery. , 2013, Optics letters.

[60]  Katsushi Inoue,et al.  Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy. , 2011, International immunopharmacology.

[61]  I. Baldi,et al.  [Epidemiology of glioblastoma]. , 2010, Neuro-Chirurgie.

[62]  Giuseppe Lombardi,et al.  5-Aminolevulinic Acid Fluorescence in High Grade Glioma Surgery: Surgical Outcome, Intraoperative Findings, and Fluorescence Patterns , 2014, BioMed research international.

[63]  F. Certo,et al.  5-ALA fluorescence-assisted surgery in pediatric brain tumors: Report of three cases and review of the literature , 2014, British journal of neurosurgery.

[64]  A. Jemal,et al.  Cancer statistics, 2013 , 2013, CA: a cancer journal for clinicians.

[65]  A. Obwegeser,et al.  Uptake and kinetics of 14C-labelled meta-tetrahydroxyphenylchlorin and 5-aminolaevulinic acid in the C6 rat glioma model. , 1998, British Journal of Cancer.

[66]  J. Slof,et al.  Observational, retrospective study of the effectiveness of 5-aminolevulinic acid in malignant glioma surgery in Spain (The VISIONA study) , 2014 .

[67]  T. Stephenson,et al.  5‐Aminolevulinic Acid Photosensitization of Dysplastic Barrett's Esophagus: A Pharmacokinetic Study , 1999, Photochemistry and photobiology.

[68]  L. Deangelis,et al.  Glioblastoma and other malignant gliomas: a clinical review. , 2013, JAMA.

[69]  F. Floeth,et al.  Finding the anaplastic focus in diffuse gliomas: The value of Gd-DTPA enhanced MRI, FET-PET, and intraoperative, ALA-derived tissue fluorescence , 2011, Clinical Neurology and Neurosurgery.

[70]  Frederic Leblond,et al.  5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence in Meningioma: Qualitative and Quantitative Measurements In Vivo , 2014, Neurosurgery.

[71]  Jian Chen,et al.  Fluorescence-guided resection of high-grade gliomas: a systematic review and meta-analysis. , 2014, Photodiagnosis and photodynamic therapy.

[72]  Mitchel S. Berger,et al.  Current and future strategies for treatment of glioma , 2016, Neurosurgical Review.

[73]  Q. Peng,et al.  5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges. , 1997, Cancer.

[74]  W. Stummer,et al.  Technical Principles for Protoporphyrin-IX-Fluorescence Guided Microsurgical Resection of Malignant Glioma Tissue , 1998, Acta Neurochirurgica.

[75]  S. Tejada Solis,et al.  Surgery guided by 5-aminolevulinic fluorescence in glioblastoma: volumetric analysis of extent of resection in single-center experience , 2011, Journal of Neuro-Oncology.

[76]  Maximilien Vermandel,et al.  Experimental use of photodynamic therapy in high grade gliomas: a review focused on 5-aminolevulinic acid. , 2014, Photodiagnosis and photodynamic therapy.

[77]  G. Reifenberger,et al.  5-Aminolevulinic acid (5-ALA)-induced fluorescence in intracerebral metastases: a retrospective study , 2012, Acta Neurochirurgica.

[78]  M. Colditz,et al.  Aminolevulinic acid (ALA)–protoporphyrin IX fluorescence guided tumour resection. Part 2: Theoretical, biochemical and practical aspects , 2012, Journal of Clinical Neuroscience.

[79]  W. Stummer,et al.  Transport of 5-aminolevulinic acid between blood and brain , 2003, Brain Research.

[80]  J C Kennedy,et al.  Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. , 1992, Journal of photochemistry and photobiology. B, Biology.

[81]  Rosalind L. Jeffree,et al.  Aminolevulinic acid (ALA)–protoporphyrin IX fluorescence guided tumour resection. Part 1: Clinical, radiological and pathological studies , 2012, Journal of Clinical Neuroscience.

[82]  Xiaofeng Chen,et al.  Intraoperative Fluorescence-Guided Resection of High-Grade Malignant Gliomas Using 5-Aminolevulinic Acid–Induced Porphyrins: A Systematic Review and Meta-Analysis of Prospective Studies , 2013, PloS one.

[83]  Alireza Gharabaghi,et al.  Resection of malignant brain tumors in eloquent cortical areas: a new multimodal approach combining 5-aminolevulinic acid and intraoperative monitoring. , 2010, Journal of neurosurgery.

[84]  D. Maucort-Boulch,et al.  [Surgery of high-grade gliomas guided by fluorescence: a retrospective study of 22 patients]. , 2013, Neuro-Chirurgie.

[85]  G. Iacob,et al.  Current data and strategy in glioblastoma multiforme , 2009, Journal of medicine and life.

[86]  N. Sanai,et al.  Trends in fluorescence image-guided surgery for gliomas. , 2014, Neurosurgery.

[87]  Jörg-Christian Tonn,et al.  Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study. Clinical article. , 2011, Journal of neurosurgery.

[88]  Kaoru Sakatani,et al.  Quantitative spectroscopic analysis of 5-aminolevulinic acid-induced protoporphyrin IX fluorescence intensity in diffusely infiltrating astrocytomas. , 2007, Neurologia medico-chirurgica.

[89]  J. Hamada,et al.  Silencing of ferrochelatase enhances 5-aminolevulinic acid-based fluorescence and photodynamic therapy efficacy , 2011, British Journal of Cancer.

[90]  V. Ntziachristos,et al.  Optical innovations in surgery , 2015, The British journal of surgery.

[91]  Mitchel S Berger,et al.  An extent of resection threshold for newly diagnosed glioblastomas. , 2011, Journal of neurosurgery.

[92]  R. Keep,et al.  Peptide transporter 2 (PEPT2) expression in brain protects against 5‐aminolevulinic acid neurotoxicity , 2007, Journal of neurochemistry.

[93]  Xiaoyao Fan,et al.  Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article. , 2011, Journal of neurosurgery.

[94]  Kathleen Seidel,et al.  Early Re-Do Surgery for Glioblastoma Is a Feasible and Safe Strategy to Achieve Complete Resection of Enhancing Tumor , 2013, PloS one.

[95]  T. Ishikawa,et al.  Enhanced expression of coproporphyrinogen oxidase in malignant brain tumors: CPOX expression and 5-ALA-induced fluorescence. , 2011, Neuro-oncology.

[96]  Jörg-Christian Tonn,et al.  Fluorescence-guided resection of malignant gliomas using 5-aminolevulinic acid: practical use, risks, and pitfalls. , 2008, Clinical neurosurgery.

[97]  Walter Stummer,et al.  Cytoreductive surgery of glioblastoma as the key to successful adjuvant therapies: new arguments in an old discussion , 2011, Acta Neurochirurgica.

[98]  Z L Gokaslan,et al.  A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. , 2001, Journal of neurosurgery.

[99]  J. Fandino,et al.  Intraoperative 5-aminolevulinic-acid-induced fluorescence in meningiomas , 2010, Acta Neurochirurgica.