Static analysis and vibration characteristics of some noncarbon nanotubes through atomistic continuum coupled modelling

[1]  G. Watts,et al.  Elastic Properties and Nonlinear Elasticity of the Noncarbon Hexagonal Lattice Nanomaterials Based on the Multiscale Modeling , 2021 .

[2]  Y. Beni,et al.  Electromechanical buckling analysis of boron nitride nanotube using molecular dynamic simulation , 2020 .

[3]  M. A. Roudbari,et al.  Free vibration problem of fluid-conveying double-walled boron nitride nanotubes via nonlocal strain gradient theory in thermal environment , 2020, Mechanics Based Design of Structures and Machines.

[4]  S. Singh Critical assessment of the interatomic potentials for the elastic properties of the noncarbon monolayer nanomaterials , 2020 .

[5]  H. Zeighampour,et al.  Buckling analysis of boron nitride nanotube with and without defect using molecular dynamic simulation , 2020 .

[6]  L. Tong,et al.  Thickness of monolayer h-BN nanosheet and edge effect on free vibration behaviors , 2019 .

[7]  L. Tong,et al.  Longitudinal and Torsional Vibration Characteristics of Boron Nitride Nanotubes , 2019, Journal of Vibration Engineering & Technologies.

[8]  S. Singh Refined multiscale model based on the second generation interatomic potential for the mechanics of graphene sheets , 2019, Mechanics of Materials.

[9]  B. P. Patel,et al.  A computationally efficient multiscale finite element formulation for dynamic and postbuckling analyses of carbon nanotubes , 2018 .

[10]  A. Ghorbanpour Arani,et al.  Nonlinear vibration of double-walled boron nitride and carbon nanopeapods under multi-physical fields with consideration of surface stress effects , 2017 .

[11]  A. Kochaev Elastic properties of noncarbon nanotubes as compared to carbon nanotubes , 2017 .

[12]  B. P. Patel,et al.  Nonlinear dynamic response of single layer graphene sheets using multiscale modelling , 2016 .

[13]  S. K. Georgantzinos,et al.  Efficient FEM simulation of static and free vibration behavior of single walled boron nitride nanotubes , 2016 .

[14]  Mohammad Hosein Fakhar,et al.  Differential quadrature method for nonlocal nonlinear vibration analysis of a boron nitride nanotube using sinusoidal shear deformation theory , 2016 .

[15]  P. Patra,et al.  Thermal vibration characteristics of armchair boron-nitride nanotubes , 2015 .

[16]  R. Ansari,et al.  A molecular dynamics study on the vibration of carbon and boron nitride double-walled hybrid nanotubes , 2015 .

[17]  A. Farajpour,et al.  Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM , 2014 .

[18]  Reza Ansari,et al.  Molecular dynamics study of the torsional vibration characteristics of boron-nitride nanotubes , 2014 .

[19]  R. Hennig,et al.  Ab initio synthesis of single-layer III-V materials , 2014 .

[20]  K. Liew,et al.  Free vibration analysis of single-walled carbon nanotubes using a higher-order gradient theory , 2013 .

[21]  Stefan Hollerer,et al.  Buckling analysis of carbon nanotubes by a mixed atomistic and continuum model , 2013 .

[22]  K. Liew,et al.  Analysis of nonlinear forced vibration of multi-layered graphene sheets , 2012 .

[23]  A. G. Arani,et al.  Nonlinear vibration of embedded SWBNNTs based on nonlocal Timoshenko beam theory using DQ method , 2012 .

[24]  A. G. Arani,et al.  Nonlocal electro-thermal transverse vibration of embedded fluid-conveying DWBNNTs , 2012 .

[25]  A. G. Arani,et al.  Electro-thermal non-local vibration analysis of embedded DWBNNTs , 2012 .

[26]  Liying Jiang,et al.  Nonlinear vibration and postbuckling analysis of a single layer graphene sheet embedded in a polymer matrix , 2012 .

[27]  S. Arghavan,et al.  Free Vibration of Single Layer Graphene Sheets: Lattice Structure Versus Continuum Plate Theories , 2011 .

[28]  Suvranu De,et al.  Mechanical properties of the hexagonal boron nitride monolayer: Ab initio study , 2011, 1107.1453.

[29]  Yunfeng Shi,et al.  A Tersoff‐based interatomic potential for wurtzite AlN , 2011 .

[30]  Xiaoqiao He,et al.  Geometrical nonlinear free vibration of multi-layered graphene sheets , 2011 .

[31]  K. B. Mustapha,et al.  Free transverse vibration of an axially loaded non-prismatic single-walled carbon nanotube embedded in a two-parameter elastic medium , 2010 .

[32]  Reza Ansari,et al.  Nonlocal plate model for free vibrations of single-layered graphene sheets , 2010 .

[33]  T. Natsuki,et al.  Vibrational analysis of double-walled carbon nanotubes with inner and outer nanotubes of different lengths , 2010 .

[34]  E. Oh Elastic properties of boron-nitride nanotubes through the continuum lattice approach , 2010 .

[35]  Ramin Vatankhah,et al.  VIBRATIONAL ANALYSIS OF CARBON NANOTUBES AND GRAPHENE SHEETS USING MOLECULAR STRUCTURAL MECHANICS APPROACH , 2009 .

[36]  J. N. Reddy,et al.  Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates , 2009 .

[37]  E. Aktürk,et al.  Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations , 2009, 0907.4350.

[38]  Jian Wu,et al.  Continuum modeling of boron nitride nanotubes , 2008, Nanotechnology.

[39]  K. Liew,et al.  The buckling of single-walled carbon nanotubes upon bending: The higher order gradient continuum and mesh-free method , 2008 .

[40]  K. Liew,et al.  Mesh-free simulation of single-walled carbon nanotubes using higher order Cauchy–Born rule , 2008 .

[41]  Jijun Zhao,et al.  Energetics and electronic structures of AlN nanotubes/wires and their potential application as ammonia sensors , 2007, Nanotechnology.

[42]  K. Hwang,et al.  Thickness of graphene and single-wall carbon nanotubes , 2006 .

[43]  J. Reddy Theory and Analysis of Elastic Plates and Shells , 2006 .

[44]  Ò. Iglesias,et al.  Stiffness and thickness of boron-nitride nanotubes , 2006, cond-mat/0607716.

[45]  Xingyu Zhao,et al.  Stability and electronic structure of single-walled InN nanotubes , 2005 .

[46]  K. M. Liew,et al.  Continuum model for the vibration of multilayered graphene sheets , 2005 .

[47]  Xu Han,et al.  TRANSVERSE VIBRATIONS OF DOUBLE-WALLED CARBON NANOTUBES UNDER COMPRESSIVE AXIAL LOAD , 2005 .

[48]  G. Vinogradov,et al.  New class of non-carbon AlP nanotubes: Structure and electronic properties , 2005 .

[49]  J. Kang,et al.  Atomistic study of III-nitride nanotubes , 2004 .

[50]  Ted Belytschko,et al.  Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule , 2004 .

[51]  Ted Belytschko,et al.  Finite element methods for the non‐linear mechanics of crystalline sheets and nanotubes , 2004 .

[52]  Chunyu Li,et al.  Vibrational behaviors of multiwalled-carbon-nanotube-based nanomechanical resonators , 2004 .

[53]  Dongju Zhang,et al.  Stability and electronic structure of AlN nanotubes , 2003 .

[54]  Huajian Gao,et al.  The effect of nanotube radius on the constitutive model for carbon nanotubes , 2003 .

[55]  A. Mioduchowski,et al.  VIBRATION OF AN EMBEDDED MULTIWALL CARBON NANOTUBE , 2003 .

[56]  Ted Belytschko,et al.  A finite deformation membrane based on inter-atomic potentials for the transverse mechanics of nanotubes , 2003 .

[57]  M. Certier,et al.  Elastic Properties of Zinc-blende G a N, A l N and I n N from Molecular Dynamics , 2003 .

[58]  Ted Belytschko,et al.  An atomistic-based finite deformation membrane for single layer crystalline films , 2002 .

[59]  W. Sekkal,et al.  A modified Tersoff potential for the study of finite temperature properties of BP , 2002 .

[60]  Philippe H. Geubelle,et al.  The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials , 2002 .

[61]  Boris I. Yakobson,et al.  C2F, BN, AND C NANOSHELL ELASTICITY FROM AB INITIO COMPUTATIONS , 2001 .

[62]  M. Certier,et al.  Molecular Dynamics Study of Zinc-Blende GaN, AIN and InN , 2000 .

[63]  Muñoz,et al.  Electronic and structural properties of cubic BN and BP. , 1995, Physical review. B, Condensed matter.

[64]  C. W. Lim,et al.  Decoupling the effects of material thickness and size scale on the transverse free vibration of BNNTs based on beam models , 2022, Mechanical Systems and Signal Processing.

[65]  B. P. Patel,et al.  Large deformation static and dynamic response of carbon nanotubes by mixed atomistic and continuum models , 2018 .

[66]  Quan Wang,et al.  A Review on the Application of Nonlocal Elastic Models in Modeling of Carbon Nanotubes and Graphenes , 2012 .

[67]  Reza Ansari,et al.  Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets , 2012 .

[68]  Fabrizio Scarpa,et al.  Transverse vibration of single-layer graphene sheets , 2011 .

[69]  S. Adhikari,et al.  Vibration and symmetry-breaking of boron nitride nanotubes , 2010, Nanotechnology.