Spectral method for a kinetic swarming model

In this paper we present the first numerical method for a kinetic description of the Vicsek swarming model. The kinetic model poses a unique challenge, as there is a distribution dependent collision invariant to satisfy when computing the interaction term. We use a spectral representation linked with a discrete constrained optimization to compute these interactions. To test the numerical scheme we investigate the kinetic model at different scales and compare the solution with the microscopic and macroscopic descriptions of the Vicsek model. We observe that the kinetic model captures key features such as vortex formation and traveling waves.

[1]  I. Couzin,et al.  Collective memory and spatial sorting in animal groups. , 2002, Journal of theoretical biology.

[2]  Francis Filbet,et al.  Analysis of spectral methods for the homogeneous Boltzmann equation , 2008, 0811.2849.

[3]  G. Parisi,et al.  Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study , 2007, Proceedings of the National Academy of Sciences.

[4]  Irene M. Gamba,et al.  A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit , 2013, J. Comput. Phys..

[5]  Irene M. Gamba,et al.  SHOCK AND BOUNDARY STRUCTURE FORMATION BY SPECTRAL-LAGRANGIAN METHODS FOR THE INHOMOGENEOUS BOLTZMANN TRANSPORT EQUATION * , 2010 .

[6]  Sébastien Motsch,et al.  Numerical Simulations of a Nonconservative Hyperbolic System with Geometric Constraints Describing Swarming Behavior , 2009, Multiscale Model. Simul..

[7]  Giacomo Dimarco,et al.  Numerical methods for kinetic equations* , 2014, Acta Numerica.

[8]  S. Rjasanow,et al.  Fast deterministic method of solving the Boltzmann equation for hard spheres , 1999 .

[9]  J. Toner,et al.  Flocks, herds, and schools: A quantitative theory of flocking , 1998, cond-mat/9804180.

[10]  A. Mogilner,et al.  A non-local model for a swarm , 1999 .

[11]  Irene M. Gamba,et al.  Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states , 2009, J. Comput. Phys..

[12]  W. Steckelmacher Molecular gas dynamics and the direct simulation of gas flows , 1996 .

[13]  Mihai Bostan,et al.  Asymptotic Fixed-Speed Reduced Dynamics for Kinetic Equations in Swarming , 2012, 1202.6557.

[14]  F. Rogier,et al.  A direct method for solving the Boltzmann equation , 1994 .

[15]  G. Toscani,et al.  Fast spectral methods for the Fokker-Planck-Landau collision operator , 2000 .

[16]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[17]  Irene M. Gamba,et al.  Global Weak Solutions for Kolmogorov–Vicsek Type Equations with Orientational Interactions , 2015, 1502.00293.

[18]  Lorenzo Pareschi,et al.  A Numerical Method for the Accurate Solution of the Fokker–Planck–Landau Equation in the Nonhomogeneous Case , 2002 .

[19]  C. Buet,et al.  A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics , 1996 .

[20]  Jos'e A. Carrillo,et al.  A well-posedness theory in measures for some kinetic models of collective motion , 2009, 0907.3901.

[21]  Bradford Sturtevant,et al.  Numerical study of discrete‐velocity gases , 1990 .

[22]  D. B. Goldstein,et al.  Monte Carlo solution of the Boltzmann equation via a discrete velocity model , 2011, J. Comput. Phys..

[23]  A. Bertozzi,et al.  A Nonlocal Continuum Model for Biological Aggregation , 2005, Bulletin of mathematical biology.

[24]  Lorenzo Pareschi,et al.  A Fourier spectral method for homogeneous boltzmann equations , 1996 .

[25]  David B. Goldstein,et al.  Investigations of the motion of discrete-velocity gases , 1988 .

[26]  I. Aoki A simulation study on the schooling mechanism in fish. , 1982 .

[27]  Pierre Degond,et al.  HYDRODYNAMIC MODELS OF SELF-ORGANIZED DYNAMICS: DERIVATION AND EXISTENCE THEORY ∗ , 2011, 1108.3160.

[28]  Pierre Degond,et al.  Continuum limit of self-driven particles with orientation interaction , 2007, 0710.0293.

[29]  R. LeVeque Numerical methods for conservation laws , 1990 .

[30]  E. Tadmor,et al.  From particle to kinetic and hydrodynamic descriptions of flocking , 2008, 0806.2182.

[31]  José A. Carrillo,et al.  Mean-field limit for the stochastic Vicsek model , 2011, Appl. Math. Lett..

[32]  Pierre Degond,et al.  DIFFUSION IN A CONTINUUM MODEL OF SELF-PROPELLED PARTICLES WITH ALIGNMENT INTERACTION , 2010, 1002.2716.

[33]  Lorenzo Pareschi,et al.  Numerical Solution of the Boltzmann Equation I: Spectrally Accurate Approximation of the Collision Operator , 2000, SIAM J. Numer. Anal..

[34]  A. Bertozzi,et al.  State Transitions and the Continuum Limit for a 2D Interacting, Self-Propelled Particle System , 2006, nlin/0606031.

[35]  Steven V. Viscido,et al.  Self-Organized Fish Schools: An Examination of Emergent Properties , 2002, The Biological Bulletin.

[36]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[37]  J. Broadwell,et al.  Study of rarefied shear flow by the discrete velocity method , 1964, Journal of Fluid Mechanics.

[38]  S. Rjasanow,et al.  Difference scheme for the Boltzmann equation based on the Fast Fourier Transform , 1997 .