Structural aspects of metal liganding to functional groups in proteins.

[1]  N. Pavletich,et al.  Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A , 1991, Science.

[2]  R. Parsons Electron transfer in biology and the solid state , 1991 .

[3]  A. Gronenborn,et al.  High-resolution three-dimensional structure of a single zinc finger from a human enhancer binding protein in solution. , 1992, Biochemistry.

[4]  L Regan,et al.  A tetrahedral zinc(II)-binding site introduced into a designed protein. , 1990, Biochemistry.

[5]  C. Leone,et al.  Agaricus bisporus metapotyrosinase: preparation, characterization, and conversion to mixed-metal derivatives of the binuclear site. , 1990, Biochemistry.

[6]  H. Schmidbaur,et al.  Aspartic and Glutamic Acid as Ligands to Alkali and Alkaline‐Earth Metals: Structural Chemistry as Related to Magnesium Therapy , 1990 .

[7]  Edward N. Baker,et al.  Copper coordination geometry in azurin undergoes minimal change on reduction of copper(II) to copper(I) , 1990 .

[8]  R. Fletterick,et al.  Regulation of serine protease activity by an engineered metal switch. , 1990, Biochemistry.

[9]  D Eisenberg,et al.  Where metal ions bind in proteins. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[10]  L. Thim,et al.  Calcium binding in alpha-amylases: an X-ray diffraction study at 2.1-A resolution of two enzymes from Aspergillus. , 1990, Biochemistry.

[11]  Molecular models constructed in an easy way: Part 1. Models of tetrahedron, trigonal bipyramid, octahedron, pentagonal bipyramid, and capped octahedron , 1990 .

[12]  G. Eichhorn,et al.  Structural studies on the active site of Escherichia coli RNA polymerase. 1. Interaction of metals on the i and i + 1 sites. , 1990, Biochemistry.

[13]  B. Vallee,et al.  Zinc coordination, function, and structure of zinc enzymes and other proteins. , 1990, Biochemistry.

[14]  Hans Eklund,et al.  Three-dimensional structure of the free radical protein of ribonucleotide reductase , 1990, Nature.

[15]  Angelo Vedani,et al.  A new force field for modeling metalloproteins , 1990 .

[16]  1H NMR study of rabbit skeletal muscle troponin C: Mg2(+)-induced conformational change. , 1990, Biochemistry.

[17]  E. Snyder,et al.  Calcium(II) site specificity: effect of size and charge on metal ion binding to an EF-hand-like site. , 1990, Biochemistry.

[18]  S. Lin,et al.  Evidence from X-ray absorption fine structure spectroscopy for significant differences in the structure of concanavalin A in solution and in the crystal. , 1990, Biochemistry.

[19]  I. Brown,et al.  Electronegativity and Lewis acid strength , 1990 .

[20]  Ernst Klenk lecture, November 1989. The complexities of intracellular Ca2+ signalling. , 1990, Biological chemistry Hoppe-Seyler.

[21]  G. H. Reed,et al.  Electron paramagnetic resonance studies of the coordination schemes and site selectivities for divalent metal ions in complexes with pyruvate kinase. , 1990, Biochemistry.

[22]  B. Edwards,et al.  Refined crystal structure of calcium-liganded carp parvalbumin 4.25 at 1.5-A resolution. , 1990, Biochemistry.

[23]  P. Chakrabarti Systematics in the interaction of metal ions with the main-chain carbonyl group in protein structures. , 1990, Biochemistry.

[24]  B. Vallee,et al.  Active-site zinc ligands and activated H2O of zinc enzymes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[25]  H L Carrell,et al.  X-ray analysis of D-xylose isomerase at 1.9 A: native enzyme in complex with substrate and with a mechanism-designed inactivator. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[26]  D. Blow,et al.  Structures of D-xylose isomerase from Arthrobacter strain B3728 containing the inhibitors xylitol and D-sorbitol at 2.5 A and 2.3 A resolution, respectively. , 1990, Journal of molecular biology.

[27]  S. O. Smith,et al.  Crystal versus solution structures of enzymes: NMR spectroscopy of a crystalline serine protease. , 1989, Science.

[28]  M. James,et al.  Crystal structures of the helix-loop-helix calcium-binding proteins. , 1989, Annual review of biochemistry.

[29]  E. Lattman,et al.  The crystal structure of the ternary complex of staphylococcal nuclease, Ca2+ and the inhibitor pdTp, refined at 1.65 Å , 1989, Proteins.

[30]  K. Wüthrich,et al.  Conformation of [Cd7]-metallothionein-2 from rat liver in aqueous solution determined by nuclear magnetic resonance spectroscopy. , 1991, Journal of molecular biology.

[31]  I. D. Brown,et al.  What Factors Determine Cation Coordination Numbers , 1988 .

[32]  H. L. Carrell,et al.  Structural aspects of metal ion carboxylate interactions , 1988 .

[33]  W. H. Armstrong Metalloprotein Crystallography Survey of Recent Results and Relationships to Model Studies , 1988 .

[34]  J. Janin,et al.  Structural analysis of the 2.8 Å model of xylose isomerase from Actinoplanes missouriensis , 1988, Proteins.

[35]  L. Sieker,et al.  Rubredoxin from Desulfovibrio gigas. A molecular model of the oxidized form at 1.4 A resolution. , 1987, Journal of molecular biology.

[36]  I. Brown Recent developments in the bond valence model of inorganic bonding , 1987 .

[37]  J. L. Smith,et al.  Structure of myohemerythrin in the azidomet state at 1.7/1.3 A resolution. , 1987, Journal of molecular biology.

[38]  Ben F. Luisi,et al.  Stereochemistry of cooperative mechanisms in hemoglobin , 1987 .

[39]  G. Cohen,et al.  Structure and refinement at 1.8 A resolution of the aspartic proteinase from Rhizopus chinensis. , 1987, Journal of molecular biology.

[40]  D. V. D. Helm,et al.  Iron Transport in Microbes, Plants and Animals , 1987 .

[41]  C. Barnes,et al.  Structure and conformation of two coprogen type siderophores neocoprogen i and neocoprogen ii , 1987 .

[42]  R. Hamlin,et al.  Crystal structure of cytochrome c peroxidase compound I. , 1987, Biochemistry.

[43]  W. Scheidt,et al.  Recent advances in the stereochemistry of metallotetrapyrroles , 1987 .

[44]  Aaron Klug,et al.  ‘Zinc fingers’: a novel protein motif for nucleic acid recognition , 1987 .

[45]  G. Petsko,et al.  The 3.0 A crystal structure of xylose isomerase from Streptomyces olivochromogenes. , 1987, Protein engineering.

[46]  A. Mildvan Role of magnesium and other divalent cations in ATP-utilizing enzymes. , 1987, Magnesium.

[47]  J. Guss,et al.  Crystal structure analyses of reduced (CuI) poplar plastocyanin at six pH values. , 1987, Journal of molecular biology.

[48]  Max Dobler,et al.  An empirical potential function for metal centers: Application to molecular mechanics calculations on metalloproteins , 1986 .

[49]  R. Pearson,et al.  Absolute electronegativity and hardness correlated with molecular orbital theory. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[50]  B C Finzel,et al.  Crystal structure of substrate-free Pseudomonas putida cytochrome P-450. , 1986, Biochemistry.

[51]  K. Parris,et al.  Convergent functional groups provide a measure of stereoelectronic effects at carboxyl oxygen. , 1986, Journal of the American Chemical Society.

[52]  J. Richardson,et al.  The heme and Fe4S4 cluster in the crystallographic structure of Escherichia coli sulfite reductase. , 1986, The Journal of biological chemistry.

[53]  J. M. Pratt,et al.  Hemes and hemoproteins. 1: Preparation and analysis of the heme-containing octapeptide (microperoxidase-8) and identification of the monomeric form in aqueous solution. , 1986, Journal of inorganic biochemistry.

[54]  K. Moffat,et al.  The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. Molecular details, ion binding, and implications for the structure of other calcium-binding proteins. , 1986, The Journal of biological chemistry.

[55]  L. Lebioda,et al.  Preferred geometry of cation-amide bonding. Crystal structures of [Mg(NMA)2(H2O)4](NO3)2 and Ca(NO3)2•4NMA (NMA=N-methylacetamide) , 1986 .

[56]  E. Baker,et al.  Blue copper proteins. The copper site in azurin from Alcaligenes denitrificans , 1986 .

[57]  J. Berg,et al.  Potential metal-binding domains in nucleic acid binding proteins. , 1986, Science.

[58]  D. Chipman,et al.  Preferred orientation of imidazole ligands in metalloporphyrins , 1986 .

[59]  W. Hol,et al.  Structure determination of Panulirus interruptus haemocyanin at 3.2 A resolution. Successful phase extension by sixfold density averaging. , 1986, Journal of molecular biology.

[60]  B. Wang,et al.  Crystal structure of Cd,Zn metallothionein. , 1985, Science.

[61]  M. Rossmann,et al.  Three-dimensional structure of catalase from Penicillium vitale at 2.0 A resolution. , 1983, Journal of molecular biology.

[62]  W. Stallings,et al.  The structure of manganese superoxide dismutase from Thermus thermophilus HB8 at 2.4-A resolution. , 1985, The Journal of biological chemistry.

[63]  B C Finzel,et al.  The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450. , 1985, The Journal of biological chemistry.

[64]  K. Parris,et al.  Convergent functional groups: synthetic and structural studies , 1985 .

[65]  Charles E. Bugg,et al.  Three-dimensional structure of calmodulin , 1985, Nature.

[66]  M. James,et al.  Structure of the calcium regulatory muscle protein troponin-C at 2.8 Å resolution , 1985, Nature.

[67]  T. A. D. Heyde,et al.  Reaction pathways from structural data: dynamic stereochemistry of zinc(II) compounds , 1984 .

[68]  T A Jones,et al.  Structure of satellite tobacco necrosis virus after crystallographic refinement at 2.5 A resolution. , 1984, Journal of molecular biology.

[69]  M. Rossmann,et al.  The Refinement of Southern Bean Mosaic Virus in Reciprocal Space , 1984 .

[70]  W. Stallings,et al.  Manganese and iron superoxide dismutases are structural homologs. , 1984, The Journal of biological chemistry.

[71]  K. Chandrasekhar,et al.  Dynamic processes in crystals examined through difference vibrational parameters ΔU: the low‐spin–high‐spin transition in tris(dithiocarbamato)iron(III) complexes , 1984 .

[72]  Peter Murray-Rust,et al.  Mapping the atomic environment of functional groups: turning 3D scatter plots into pseudo-density contours , 1984 .

[73]  W. Hol,et al.  3.2 Å structure of the copper-containing, oxygen-carrying protein Panulirus interruptus haemocyanin , 1984, Nature.

[74]  H. L. Carrell,et al.  X-ray crystal structure of D-xylose isomerase at 4-A resolution. , 1984, The Journal of biological chemistry.

[75]  L. Sieker,et al.  BINUCLEAR IRON COMPLEXES IN METHEMERYTHRIN AND AZIDOMETHEMERYTHRIN AT 2. 0-A RESOLUTION. , 1984 .

[76]  E. Baker,et al.  Hydrogen bonding in globular proteins. , 1984, Progress in biophysics and molecular biology.

[77]  Single crystals of cadmium, zinc metallothionein. , 1985, The Journal of biological chemistry.

[78]  M Karplus,et al.  Hemoglobin tertiary structural change on ligand binding. Its role in the co-operative mechanism. , 1983, Journal of molecular biology.

[79]  Arthur J. Olson,et al.  Structure of tomato bushy stunt virus IVThe virus particle at 29resolution , 1983 .

[80]  John A. Tainer,et al.  Structure and mechanism of copper, zinc superoxide dismutase , 1983, Nature.

[81]  J. Guss,et al.  Structure of oxidized poplar plastocyanin at 1.6 A resolution. , 1983, Journal of molecular biology.

[82]  Crystal structures of the active site in specifically metal-depleted and cobalt-substituted horse liver alcohol dehydrogenase derivatives. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[83]  D C Rees,et al.  Refined crystal structure of carboxypeptidase A at 1.54 A resolution. , 1983, Journal of molecular biology.

[84]  C. Nordman,et al.  Structures of two forms of sodium acetate, Na+.C2H3O2− , 1983 .

[85]  W. Hendrickson,et al.  Structure of trimeric haemerythrin , 1983, Nature.

[86]  W. Stallings,et al.  Intermolecular interactions of the carbon-fluorine bond: the crystallographic environment of fluorinated carboxylic acids and related structures , 1983 .

[87]  I. D. Brown,et al.  The inorganic crystal structure data base , 1983, J. Chem. Inf. Comput. Sci..

[88]  B F Anderson,et al.  Structure of azurin from Alcaligenes denitrificans at 2.5 A resolution. , 1983, Journal of molecular biology.

[89]  J. Randall,et al.  A comparative assessment of the zinc–protein coordination in 2Zn–insulin as determined by X-ray absorption fine structure (EXAFS) and X-ray crystallography , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[90]  B. Matthews,et al.  Structure of thermolysin refined at 1.6 A resolution. , 1982, Journal of molecular biology.

[91]  R. C. Agarwal,et al.  Manganese and calcium binding sites of concanavalin A. , 1982, Journal of molecular biology.

[92]  J. Richardson,et al.  Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase. , 1980, Journal of molecular biology.

[93]  B. Matthews,et al.  Binding of hydroxamic acid inhibitors to crystalline thermolysin suggests a pentacoordinate zinc intermediate in catalysis. , 1982, Biochemistry.

[94]  Preliminary x-ray diffraction studies on a [4Fe-4S] ferredoxin from Bacillus thermoproteolyticus. , 1981, Journal of molecular biology.

[95]  I. D. Brown,et al.  INORGANIC CRYSTAL STRUCTURE DATABASE , 1981 .

[96]  Aluminium: when is it like silicon? , 1981 .

[97]  R. Gandour On the importance of orientation in general base catalysis by carboxylate , 1981 .

[98]  J. Sanders-Loehr,et al.  Structure of the binuclear iron complex in metazidohaemerythrin from Themiste dyscritum at 2.2. Å resolution , 1981, Nature.

[99]  C. Bugg,et al.  The geometry of calcium carboxylate interactions in crystalline complexes , 1981 .

[100]  W. Hol,et al.  Structure of bovine pancreatic phospholipase A2 at 1.7A resolution. , 1981, Journal of molecular biology.

[101]  E. T. Adman,et al.  Structural Features of Azurin at 2.7 Å Resolution , 1981 .

[102]  J. Glusker Citrate conformation and chelation: enzymic implications , 1980 .

[103]  I. Brown A structural model for Lewis acids and bases. An analysis of the structural chemistry of the acetate and trifluoroacetate ions , 1980 .

[104]  I. Brown,et al.  The structure of thallium(I) tetraacetatothallate(III): when is the lone pair of electrons on TII stereoactive? , 1980 .

[105]  T. Tsukihara,et al.  Structure of S. platensis [2Fe-2S] ferredoxin and evolution of chloroplast-type ferredoxins , 1980, Nature.

[106]  H. Gray,et al.  Distances of electron transfer to and from metalloprotein redox sites in reactions with inorganic complexes , 1980 .

[107]  K. D. Watenpaugh,et al.  Crystallographic refinement of rubredoxin at 12 resolution , 1980 .

[108]  C. Bugg,et al.  The geometry of calcium–water interactions in crystalline hydrates , 1980 .

[109]  F. Allen,et al.  The Cambridge Crystallographic Data Centre: computer-based search, retrieval, analysis and display of information , 1979 .

[110]  P. McDonnell,et al.  pH-dependent migration of copper(II) to the vacant zinc-binding site of zinc-free bovine erythrocyte superoxide dismutase. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[111]  E. Adman A comparison of the structures of electron transfer proteins. , 1979, Biochimica et biophysica acta.

[112]  F. A. Cotton,et al.  Staphylococcal nuclease: proposed mechanism of action based on structure of enzyme-thymidine 3',5'-bisphosphate-calcium ion complex at 1.5-A resolution. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[113]  M. R. Peterson,et al.  Determination and analysis of the formic acid conformational hypersurface , 1979 .

[114]  L. Sieker,et al.  A crystallographic model for azurin a 3 A resolution. , 1978, Journal of molecular biology.

[115]  Hexaamminecobalt(III) chloride , 1978 .

[116]  E. Deutsch,et al.  Trans effect in octahedral complexes. 3. Comparison of kinetic and structural trans effects induced by coordinated sulfur in sulfito- and sulfinatopentaaminecobalt(III) complexes , 1978 .

[117]  I. Brown Bond valences—a simple structural model for inorganic chemistry , 1978 .

[118]  C. Carter New stereochemical analogies between iron-sulfur electron transport proteins. , 1977, The Journal of biological chemistry.

[119]  J. Dunitz,et al.  Directional preferences of nonbonded atomic contacts with divalent sulfur. 1. Electrophiles and nucleophiles , 1977 .

[120]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[121]  H. L. Carrell,et al.  A synthetic tetranuclear iron-sulfur complex with ionized side chains: the crystal structure of (Fe4S4(S(CH2)2COO)4)(6-)-(Na5-N(C4H9)4)(6+)-5C5H9NO. , 1977, Journal of the American Chemical Society.

[122]  L. Sieker,et al.  A structural model of rubredoxin from Desulfovibrio vulgaris at 2 A resolution. , 1977, Journal of molecular biology.

[123]  R. Huber,et al.  Crystal structure of bovine trypsinogen at 1-8 A resolution. II. Crystallographic refinement, refined crystal structure and comparison with bovine trypsin. , 1977, Journal of molecular biology.

[124]  Radioprotectant Sodium Fluoroacetate , 1977 .

[125]  R. Stroud,et al.  Structure of bovine trypsinogen at 1.9 A resolution. , 1977, Biochemistry.

[126]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[127]  L. H. Jensen,et al.  Structure of Peptococcus aerogenes ferredoxin. Refinement at 2 A resolution. , 1976, The Journal of biological chemistry.

[128]  R. King Inorganic Compounds with Unusual Properties—II , 1976 .

[129]  R. Kretsinger,et al.  Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis. , 1976, Journal of molecular biology.

[130]  K. Watenpaugh,et al.  NH---S hydrogen bonds in Peptococcus aerogenes ferredoxin, Clostridium pasteurianum rubredoxin, and Chromatium high potential iron protein. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[131]  K. B. Ward,et al.  Quaternary and tertiary structure of haemerythrin , 1975, Nature.

[132]  H. Bürgi Stereochemistry of Reaction Paths as Determined from Crystal Structure Data—A Relationship between Structure and Energy , 1975 .

[133]  Peter Murray-Rust,et al.  Chemical reaction paths. V. SN1 reaction of tetrahedral molecules , 1975 .

[134]  J. Kraut,et al.  Crystallographic structure refinement of Chromatium high potential iron protein at two Angstroms resolution. , 1975, The Journal of biological chemistry.

[135]  Iron-sulphur clusters in natural and synthetic systems. , 1975 .

[136]  B. Matthews,et al.  The conformation of thermolysin. , 1974, The Journal of biological chemistry.

[137]  M. Trkula,et al.  Structural trans effect in sulfur bound sulfitopentaaminecobalt(III) chloride monohydrate , 1974 .

[138]  R. Kretsinger,et al.  Carp muscle calcium-binding protein. II. Structure determination and general description. , 1973, The Journal of biological chemistry.

[139]  I. Brown,et al.  Empirical bond-strength–bond-length curves for oxides , 1973 .

[140]  H. L. Carrell,et al.  Manganous citrate decahydrate , 1973 .

[141]  A. Mildvan,et al.  Interaction of pyruvate with pyruvate carboxylase and pyruvate kinase as studied by paramagnetic effects on 13 C relaxation rates. , 1973, Biochemistry.

[142]  W. Lovenberg Iron-sulfur proteins, , 1973 .

[143]  R. Kretsinger Gene triplication deduced from the tertiary structure of a muscle calcium binding protein. , 1972, Nature: New biology.

[144]  B. Strandberg,et al.  Crystal structure of human erythrocyte carbonic anhydrase C. VI. The three-dimensional structure at high resolution in relation to other mammalian carbonic anhydrases. , 1972, Cold Spring Harbor symposia on quantitative biology.

[145]  M. N. Hughes The Inorganic Chemistry of Biological Processes , 1972 .

[146]  Kenichi Fukui,et al.  Recognition of stereochemical paths by orbital interaction , 1971 .

[147]  F A Quiocho,et al.  Carboxypeptidase A: a protein and an enzyme. , 1971, Advances in protein chemistry.

[148]  M. Perutz Stereochemistry of Cooperative Effects in Haemoglobin: Haem–Haem Interaction and the Problem of Allostery , 1970, Nature.

[149]  W. Lovenberg,et al.  Structure of rubredoxin: an x-ray study to 2.5 A resolution. , 1970, Journal of molecular biology.

[150]  M. Golomb,et al.  Model compounds for metal–protein interaction: crystal structure of three platinum(II) complexes of L- and DL-methionine and glycyl-L-methionine , 1970 .

[151]  A. Mildvan 9 Metals in Enzyme Catalsis , 1970 .

[152]  R. J. P. Williams,et al.  Tilden Lecture. The biochemistry of sodium, potassium, magnesium, and calcium , 1970 .

[153]  E. Baker,et al.  Structure of Rhombohedral 2 Zinc Insulin Crystals , 1969, Nature.

[154]  D. Eisenberg,et al.  PtCl24-: a methionine-specific label for protein crystallography. , 1969, Journal of molecular biology.

[155]  R. D. Shannon,et al.  Effective ionic radii in oxides and fluorides , 1969 .

[156]  R. Pearson Hard and soft acids and bases, HSAB, part II: Underlying theories , 1968 .

[157]  R. Pearson Hard and soft acids and bases, HSAB, part 1: Fundamental principles , 1968 .

[158]  H. Muirhead,et al.  Three-dimensional Fourier Synthesis of Horse Oxyhaemoglobin at 2.8 Å Resolution : (I) X-ray Analysis , 1968, Nature.

[159]  W. H. Baur,et al.  On the crystal chemistry of salt hydrates. V. The determination of the crystal structure of CuSO4.3H2O (bonattite) , 1968 .

[160]  R J Williams,et al.  Metalloenzymes: the entatic nature of their active sites. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[161]  G. Klopman,et al.  Chemical reactivity and the concept of charge- and frontier-controlled reactions , 1968 .

[162]  M. Harding,et al.  The crystal structure of bis(histidino)cadmium dihydrate , 1967 .

[163]  B. O'Connor,et al.  A neutron diffraction analysis of the crystal structure of tetragonal nickel sulphate hexadeuterate , 1966 .

[164]  C. K. Johnson X-RAY CRYSTAL ANALYSIS OF THE SUBSTRATES OF ACONITASE. V. MAGNESIUM CITRATE DECAHYDRATE (MG(H2O)6)(MGC6H5O7(H2O))2. 2H2O. , 1965, Acta crystallographica.

[165]  N. A. Curry,et al.  The water molecules in CuSO4.5H2O , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[166]  G. Schwarzenbach The General, Selective, and Specific Formation of Complexes by Metallic Cations , 1961 .

[167]  R. G. Hart,et al.  Structure of Myoglobin: A Three-Dimensional Fourier Synthesis at 2 Å. Resolution , 1960, Nature.

[168]  L. Orgel An introduction to transition-metal chemistry , 1960 .

[169]  S. Ahrland,et al.  The relative affinities of ligand atoms for acceptor molecules and ions , 1958 .

[170]  E. G. Rochow,et al.  A scale of electronegativity based on electrostatic force , 1958 .

[171]  L. Orgel Ligand-field theory , 1957 .

[172]  F. Gurd,et al.  Complex formation between metallic cations and proteins, peptides and amino acids. , 1956, Advances in protein chemistry.

[173]  W. Zachariasen Crystal chemical studies of the 5f-series of elements. XXIII. On the crystal chemistry of uranyl compounds and of related compounds of transuranic elements , 1954 .

[174]  R. J. P. Williams,et al.  637. The stability of transition-metal complexes , 1953 .

[175]  R. J. Williams,et al.  Order of Stability of Metal Complexes , 1948, Nature.

[176]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[177]  H. A. Jahn,et al.  Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy , 1937 .

[178]  H. Lipson,et al.  The Crystal Structure of Copper Sulphate Pentahydrate, CuSO$_{4}$. 5H$_{2}$O , 1934 .

[179]  W. Zachariasen A Set of Empirical Crystal Radii for Ions with Inert Gas Configuration , 1931 .

[180]  L. Pauling THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS , 1929 .

[181]  V. M. Goldschmidt,et al.  Crystal structure and chemical constitution , 1929 .

[182]  Gilbert N. Lewis,et al.  Valence And The Structure Of Atoms And Molecules , 1923 .

[183]  THE CRYSTAL STRUCTURE OF AMMONIUM CHLOROPLATINATE. , 1921 .

[184]  A. Werner,et al.  Beiträge zur Konstitution anorganischer Verbindungen , 1893 .