Modeling Transit Dark Energy in f(R,Lm)-gravity

This research paper deals with a transit dark energy cosmological model in $f(R, L_{m})$-gravity with observational constraints. For this, we consider a flat FLRW space-time and have taken a cosmological cosntant-like parameter $\beta$ in our field equations. The model has two energy parameters~ $\Omega_{m0}~ and~ \Omega_{\beta0}$, which govern the mechanism of the universe, in particular its present accelerated phase. To make the model cope with the present observational scenario, we consider three types of observational data set: $46$ Hubble parameter data set, SNe Ia $715$ data sets of distance modulus and apparent magnitude, and $40$ datasets of SNe Ia Bined compilation in the redshift $0\leq z<1.7$. We have approximated the present values of the energy parameters by applying $R^{2}$ and $\chi^{2}$-test in the observational and theoretical values of Hubble, distance modulus, and apparent magnitude parameters. Also, we have measured the approximate present values of cosmographic coefficients $\{H_{0}, q_{0}, j_{0}, s_{0}, l_{0}, m_{0}\}$. It is found that our approximated value-based model fits best with the observational module. We have found that as $t\to\infty$ (or $z\to 0$) then $\{q, j, s, l, m\}\to\{-1, 1, 1, 1, 1\}$. The cosmic age of the present universe is also approximated and comes up to the expectation. Our model shows a transit phase of the present accelerating universe with a deceleration in the past and has a transition point.

[1]  P. Sahoo,et al.  Cosmology in f(R,L) gravity , 2022, Physics Letters B.

[2]  Nisha Godani Charged thin-shell wormholes in f(R) gravity , 2021, International Journal of Geometric Methods in Modern Physics.

[3]  Nisha Godani,et al.  Charged traversable wormholes in f(R) gravity , 2021 .

[4]  J. Zinn,et al.  Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM , 2020, 2012.08534.

[5]  K. Dimopoulos Dynamic Dark Energy , 2020 .

[6]  Nisha Godani,et al.  Traversable wormholes in f(R) gravity with constant and variable redshift functions , 2020, 2004.14209.

[7]  I. Semiz,et al.  Pantheon update on a model-independent analysis of cosmological supernova data , 2020, Classical and Quantum Gravity.

[8]  Nisha Godani,et al.  Validation of energy conditions in wormhole geometry within viable f(R) gravity , 2019, The European Physical Journal C.

[9]  S. Capozziello,et al.  Extended gravity cosmography , 2019, International Journal of Modern Physics D.

[10]  Hao Wei,et al.  Observational constraints on growth index with cosmography , 2019, The European Physical Journal C.

[11]  N. E. Sommer,et al.  First cosmological results using Type Ia supernovae from the Dark Energy Survey: measurement of the Hubble constant , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  Niladri Paul,et al.  Constraining the dark energy statefinder hierarchy in a kinematic approach , 2018, Journal of Cosmology and Astroparticle Physics.

[13]  Ruchika,et al.  Model-independent constraints on dark energy evolution from low-redshift observations , 2018, Monthly Notices of the Royal Astronomical Society.

[14]  K. Bamba,et al.  Observational constraints on the jerk parameter with the data of the Hubble parameter , 2018, The European Physical Journal C.

[15]  L. Amendola,et al.  Limits on the Reconstruction of a Single Dark Energy Scalar Field Potential from SNe Ia Data , 2018, 1803.01879.

[16]  V. Busti,et al.  Gauging the cosmic acceleration with recent type Ia supernovae data sets , 2017, 1801.00114.

[17]  C. Bengaly,et al.  Isotropy of low redshift type Ia supernovae: A Bayesian analysis , 2017, 1711.10536.

[18]  Xing Zhang,et al.  Constraining $f(R)$ gravity in solar system, cosmology and binary pulsar systems , 2017, 1711.08991.

[19]  David O. Jones,et al.  The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample , 2017, The Astrophysical Journal.

[20]  F. Montanari,et al.  Backreaction and FRW consistency conditions , 2017, 1709.06022.

[21]  Hao Wei,et al.  Model-independent constraints on Lorentz invariance violation via the cosmographic approach , 2017, 1707.06367.

[22]  Hang Li,et al.  Testing the Interacting Dark Energy Model with Cosmic Microwave Background Anisotropy and Observational Hubble Data , 2017, Entropy.

[23]  C. R. Filho,et al.  Constraints on kinematic parameters at z≠0 , 2017, Journal of Cosmology and Astroparticle Physics.

[24]  Salvatore Capozziello,et al.  Information entropy and dark energy evolution , 2017, 1704.00195.

[25]  E. Saridakis,et al.  New observational constraints on f(T) gravity from cosmic chronometers , 2016, 1606.04359.

[26]  R. Nichol,et al.  Age-dating luminous red galaxies observed with the Southern African Large Telescope , 2016, 1702.00418.

[27]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[28]  S. Bergliaffa,et al.  Evolution of vacuum bubbles embedded in inhomogeneous spacetimes , 2016, 1606.07500.

[29]  C. Martins,et al.  Real-time cosmography with redshift derivatives , 2016, 1606.07261.

[30]  S. Basilakos,et al.  Angular distribution of cosmological parameters as a probe of inhomogeneities: a kinematic parametrisation , 2016, 1603.07519.

[31]  Daniel Thomas,et al.  A 6% measurement of the Hubble parameter at z∼0.45: direct evidence of the epoch of cosmic re-acceleration , 2016, 1601.01701.

[32]  O. Luongo,et al.  Cosmological degeneracy versus cosmography: a cosmographic dark energy model , 2015, 1512.07076.

[33]  Orlando Luongo,et al.  On the theory and applications of modern cosmography , 2015, 1511.06532.

[34]  F. Piazza,et al.  Minimal cosmography , 2015, 1511.02169.

[35]  T. Harko,et al.  Gravitational induced particle production through a nonminimal curvature–matter coupling , 2015, 1508.02511.

[36]  H. Quevedo,et al.  Self-accelerated Universe Induced by Repulsive Effects as an Alternative to Dark Energy and Modified Gravities , 2015, 1507.06446.

[37]  I. Semiz,et al.  What do the cosmological supernova data really tell us? , 2015, 1505.04043.

[38]  V. A. Cherkaskiy,et al.  New cosmographic constraints on the dark energy and dark matter coupling , 2015, 1503.04056.

[39]  Michele Moresco Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at z ∼ 2 , 2015, 1503.01116.

[40]  M. Visser Conformally Friedmann–Lemaître–Robertson–Walker cosmologies , 2015, 1502.02758.

[41]  S. Capozziello,et al.  Connecting early and late universe by $f(R)$ gravity , 2014, 1411.2822.

[42]  T. Harko,et al.  Generalized Curvature-Matter Couplings in Modified Gravity , 2014, Extensions of f(R) Gravity.

[43]  S. Capozziello,et al.  Cosmographic bounds on the cosmological deceleration-acceleration transition redshift in f(R) gravity , 2014, 1403.1421.

[44]  S. Capozziello,et al.  Cosmographic Constraints and Cosmic Fluids , 2013, 1312.1825.

[45]  Menglu Dong,et al.  TESTING LAMBDA AND THE LIMITS OF COSMOGRAPHY WITH THE UNION2.1 SUPERNOVA COMPILATION , 2013, 1308.6050.

[46]  O. Luongo DARK ENERGY FROM A POSITIVE JERK PARAMETER , 2013 .

[47]  J. García-Bellido,et al.  Comparative analysis of model-independent methods for exploring the nature of dark energy , 2013, 1306.4885.

[48]  Bharat Ratra,et al.  Binned Hubble parameter measurements and the cosmological deceleration–acceleration transition , 2013, 1305.1957.

[49]  K. Liao,et al.  Energy conditions in f(R, Lm) gravity , 2012, 1212.4656.

[50]  H. Quevedo,et al.  Cosmographic study of the universe’s specific heat: a landscape for cosmology? , 2012, 1211.0626.

[51]  S. Capozziello,et al.  Updated constraints on f(R) gravity from cosmography , 2012, 1210.5149.

[52]  Yun Wang,et al.  Modelling the anisotropic two-point galaxy correlation function on small scales and single-probe measurements of H(z), DA(z) and f(z)σ8(z) from the Sloan Digital Sky Survey DR7 luminous red galaxies , 2012, 1209.0210.

[53]  Siqi Liu,et al.  Four new observational H(z) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven , 2012, 1207.4541.

[54]  S. Capozziello,et al.  Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests , 2012, 1205.3421.

[55]  B. Garilli,et al.  Improved constraints on the expansion rate of the Universe up to z ∼ 1.1 from the spectroscopic evolution of cosmic chronometers , 2012, 1201.3609.

[56]  S. Capozziello,et al.  Cosmography in f(T)-gravity , 2011, 1108.2789.

[57]  J. C. Carvalho,et al.  Cosmography and cosmic acceleration , 2011, 1102.5319.

[58]  S. Capozziello,et al.  Cosmography of f(R) - brane cosmology , 2010, 1010.1547.

[59]  T. Harko Galactic rotation curves in modified gravity with nonminimal coupling between matter and geometry , 2010, 1004.0576.

[60]  T. Harko The matter Lagrangian and the energy-momentum tensor in modified gravity with nonminimal coupling between matter and geometry , 2010, 1001.5349.

[61]  V. Faraoni Lagrangian description of perfect fluids and modified gravity with an extra force , 2009, 0912.1249.

[62]  L. Verde,et al.  Cosmic chronometers: constraining the equation of state of dark energy. I: H(z) measurements , 2009, 0907.3149.

[63]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[64]  S. Nesseris Matter density perturbations in modified gravity models with arbitrary coupling between matter and geometry , 2008, 0811.4292.

[65]  J. V. Cunha,et al.  Kinematic constraints to the transition redshift from supernovae type Ia union data , 2008, 0811.2379.

[66]  T. Harko Modified gravity with arbitrary coupling between matter and geometry , 2008, 0810.0742.

[67]  E. Gaztañaga,et al.  Clustering of luminous red galaxies – IV. Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z) , 2008, 0807.3551.

[68]  S. Capozziello,et al.  Cosmography of f ( R ) gravity , 2008, 0802.1583.

[69]  A. Melchiorri,et al.  Large scale structure as a probe of gravitational slip , 2008, 0802.1068.

[70]  E. Elizalde,et al.  Class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion , 2007, 0712.4017.

[71]  S. Capozziello,et al.  Solar system and equivalence principle constraints on f(R) gravity by the chameleon approach , 2007, 0712.2268.

[72]  S. Nojiri,et al.  Modified f(R) gravity unifying R m inflation with the ΛCDM epoch , 2007, 0710.1738.

[73]  V. Faraoni Viability criterion for modified gravity with an extra force , 2007, 0710.1291.

[74]  S. Tsujikawa Observational signatures of f(R) dark energy models that satisfy cosmological and local gravity constraints , 2007, 0709.1391.

[75]  J. Alcaniz,et al.  Energy conditions in f(R) gravity , 2007, 0708.0411.

[76]  S. Nojiri,et al.  Unifying inflation with ΛCDM epoch in modified f(R) gravity consistent with Solar System tests , 2007, 0707.1941.

[77]  A. Starobinsky Disappearing cosmological constant in f(R) gravity , 2007, 0706.2041.

[78]  L. Amendola,et al.  Phantom crossing, equation-of-state singularities, and local gravity constraints in f(R) models , 2007, 0705.0396.

[79]  C. Boehmer,et al.  Extra force in f(R) modified theories of gravity , 2007, 0704.1733.

[80]  Pengjie Zhang Behavior of f ( R ) gravity in the solar system, galaxies, and clusters , 2007, astro-ph/0701662.

[81]  V. Faraoni Solar system experiments do not yet veto modified gravity models , 2006, gr-qc/0607016.

[82]  S. Capozziello,et al.  Cosmological viability of f(R)-gravity as an ideal fluid and its compatibility with a matter dominated phase , 2006, astro-ph/0604431.

[83]  L. Amendola,et al.  Are f(R) dark energy models cosmologically viable? , 2006, Physical review letters.

[84]  E. Copeland,et al.  Dynamics of dark energy , 2006, hep-th/0603057.

[85]  O. Bertolami,et al.  General Theory of Relativity: Will It Survive the Next Decade? , 2006, gr-qc/0602016.

[86]  T. Koivisto,et al.  Dark Energy Anisotropic Stress and Large Scale Structure Formation , 2005, astro-ph/0512135.

[87]  M. John Cosmography, Decelerating Past, and Cosmological Models: Learning the Bayesian Way , 2005, astro-ph/0506284.

[88]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[89]  L. Verde,et al.  Constraints on the redshift dependence of the dark energy potential , 2004, astro-ph/0412269.

[90]  M. Visser Cosmography: Cosmology without the Einstein equations , 2004, gr-qc/0411131.

[91]  Valerio Faraoni,et al.  Cosmology in Scalar-Tensor Gravity , 2004 .

[92]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[93]  S. Nojiri,et al.  Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration , 2003, hep-th/0307288.

[94]  S. Carroll,et al.  Is Cosmic Speed-Up Due to New Gravitational Physics? , 2003, astro-ph/0306438.

[95]  R. Caldwell,et al.  Cosmic Microwave Background and Supernova Constraints on Quintessence: Concordance Regions and Target Models , 2003, astro-ph/0305334.

[96]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[97]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[98]  F. Steiner,et al.  Dark energy in a hyperbolic universe , 2001, astro-ph/0109288.

[99]  G. Lazarides Corfu Summer Institute on Elementary Particle Physics, 1998 PROCEEDINGS Introduction to Cosmology , 2022 .

[100]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[101]  I. Antoniadis,et al.  On the cosmological constant problem , 1984 .

[102]  R. Kerner Cosmology without singularity and nonlinear gravitational Lagrangians , 1982 .

[103]  E. Harrison Observational tests in cosmology , 1976, Nature.

[104]  H. Buchdahl Non-Linear Lagrangians and Cosmological Theory , 1970 .

[105]  Michael Berry,et al.  Cosmography , 1960, The Classical Review.

[106]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples , 2014 .

[107]  Adam D. Myers,et al.  Baryon Acoustic Oscillations in the Lyforest of BOSS quasars , 2012 .

[108]  S. Agarwal,et al.  LRS Bianchi Type II Perfect Fluid Cosmological Models in Normal Gauge for Lyra’s Manifold , 2011 .

[109]  G. Singh,et al.  LRS Bianchi Type-I Universe in Barber’s Second Self Creation Theory , 2009 .

[110]  张鹏杰 Behavior of f(R) gravity in the solar system,galaxies,and clusters , 2007 .

[111]  G. Ellis,et al.  A class of homogeneous cosmological models , 1969 .