Synaptic Tenacity or Lack Thereof: Spontaneous Remodeling of Synapses

Synaptic plasticity - the directed modulation of synaptic connections by specific activity histories or physiological signals - is believed to be a major mechanism for the modification of neuronal network function. This belief, however, has a 'flip side': the supposition that synapses do not change spontaneously in manners unrelated to such signals. Contrary to this supposition, recent studies reveal that synapses do change spontaneously, and to a fairly large extent. Here we review experimental results on spontaneous synaptic remodeling, its relative contributions to total synaptic remodeling, its statistical characteristics, and its physiological importance. We also address challenges it poses and avenues it opens for future experimental and theoretical research.

[1]  David Kappel,et al.  Network Plasticity as Bayesian Inference , 2015, PLoS Comput. Biol..

[2]  Karel Svoboda,et al.  Experience-dependent and cell-type-specific spine growth in the neocortex , 2006, Nature.

[3]  William R. Gray Roncal,et al.  Saturated Reconstruction of a Volume of Neocortex , 2015, Cell.

[4]  Anthony Holtmaat,et al.  The Relationship between PSD-95 Clustering and Spine Stability In Vivo , 2014, The Journal of Neuroscience.

[5]  W. Gan,et al.  Development of Long-Term Dendritic Spine Stability in Diverse Regions of Cerebral Cortex , 2005, Neuron.

[6]  K. Maccorquodale Organization of Behavior : A Neuropsychological Theory , 1951 .

[7]  Ann Marie Craig,et al.  Synapse composition and organization following chronic activity blockade in cultured hippocampal neurons , 2005, The Journal of comparative neurology.

[8]  Kenneth S Kosik,et al.  Life at Low Copy Number: How Dendrites Manage with So Few mRNAs , 2016, Neuron.

[9]  Stierlin Organization of Behavior. A Neuropsychological Theory , 1953 .

[10]  J. Bourne,et al.  Do thin spines learn to be mushroom spines that remember? , 2007, Current Opinion in Neurobiology.

[11]  K. Svoboda,et al.  Experience-dependent structural synaptic plasticity in the mammalian brain , 2009, Nature Reviews Neuroscience.

[12]  Jun Noguchi,et al.  Structural dynamics of dendritic spines in memory and cognition , 2010, Trends in Neurosciences.

[13]  G. Marrs,et al.  Rapid formation and remodeling of postsynaptic densities in developing dendrites , 2001, Nature Neuroscience.

[14]  K. Svoboda,et al.  Spine growth precedes synapse formation in the adult neocortex in vivo , 2006, Nature Neuroscience.

[15]  Anthony Holtmaat,et al.  Single cell electroporation for longitudinal imaging of synaptic structure and function in the adult mouse neocortex in vivo , 2015, Front. Neuroanat..

[16]  P. Hiesinger,et al.  The synaptic maintenance problem: membrane recycling, Ca2+ homeostasis and late onset degeneration , 2013, Molecular Neurodegeneration.

[17]  Christian Tetzlaff,et al.  Formation and maintenance of robust long-term information storage in the presence of synaptic turnover , 2015 .

[18]  G. Buzsáki,et al.  The log-dynamic brain: how skewed distributions affect network operations , 2014, Nature Reviews Neuroscience.

[19]  Norio Matsuki,et al.  Active Hippocampal Networks Undergo Spontaneous Synaptic Modification , 2007, PloS one.

[20]  Hiroaki Takehara,et al.  Abnormal intrinsic dynamics of dendritic spines in a fragile X syndrome mouse model in vivo , 2016, Scientific Reports.

[21]  N. Ziv,et al.  Presynaptic and Postsynaptic Scaffolds , 2014, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[22]  Patrick C. Trettenbrein The Demise of the Synapse As the Locus of Memory: A Looming Paradigm Shift? , 2016, bioRxiv.

[23]  Christian Rosenmund,et al.  Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Sen Song,et al.  Increased axonal bouton dynamics in the aging mouse cortex , 2013, Proceedings of the National Academy of Sciences.

[25]  Noam E. Ziv,et al.  Relative Contributions of Specific Activity Histories and Spontaneous Processes to Size Remodeling of Glutamatergic Synapses , 2016, PLoS biology.

[26]  Pablo Ariel,et al.  Intrinsic variability in Pv, RRP size, Ca2+ channel repertoire, and presynaptic potentiation in individual synaptic boutons , 2012, Front. Syn. Neurosci..

[27]  G. Mongillo,et al.  Intrinsic volatility of synaptic connections — a challenge to the synaptic trace theory of memory , 2017, Current Opinion in Neurobiology.

[28]  Mark J. Schnitzer,et al.  Impermanence of dendritic spines in live adult CA1 hippocampus , 2015, Nature.

[29]  N. Ziv,et al.  Long-Term Relationships between Synaptic Tenacity, Synaptic Remodeling, and Network Activity , 2009, PLoS biology.

[30]  Nils Brose,et al.  Formation and Maintenance of Functional Spines in the Absence of Presynaptic Glutamate Release , 2017, Neuron.

[31]  Karel Svoboda,et al.  Rapid Functional Maturation of Nascent Dendritic Spines , 2009, Neuron.

[32]  Shigeo Okabe,et al.  Differential Control of Postsynaptic Density Scaffolds via Actin-Dependent and -Independent Mechanisms , 2006, The Journal of Neuroscience.

[33]  Noam E Ziv,et al.  Principles of glutamatergic synapse formation: seeing the forest for the trees , 2001, Current Opinion in Neurobiology.

[34]  Noam E. Ziv,et al.  Matching Dynamics of Presynaptic and Postsynaptic Scaffolds , 2013, The Journal of Neuroscience.

[35]  T. Branco,et al.  The probability of neurotransmitter release: variability and feedback control at single synapses , 2009, Nature Reviews Neuroscience.

[36]  Daniel Choquet,et al.  Super-Resolution Imaging Reveals That AMPA Receptors Inside Synapses Are Dynamically Organized in Nanodomains Regulated by PSD95 , 2013, The Journal of Neuroscience.

[37]  Jonas Ranft,et al.  An aggregation-removal model for the formation and size determination of post-synaptic scaffold domains , 2017, PLoS Comput. Biol..

[38]  T. Sejnowski,et al.  Nanoconnectomic upper bound on the variability of synaptic plasticity , 2015, eLife.

[39]  Noam E. Ziv,et al.  Neuroligin-1 Loss Is Associated with Reduced Tenacity of Excitatory Synapses , 2012, PloS one.

[40]  Amanda L. Loshbaugh,et al.  Labelling and optical erasure of synaptic memory traces in the motor cortex , 2015, Nature.

[41]  Naama Brenner,et al.  Synaptic Size Dynamics as an Effectively Stochastic Process , 2014, PLoS Comput. Biol..

[42]  P. Verstreken,et al.  Presynaptic protein homeostasis and neuronal function. , 2017, Current opinion in genetics & development.

[43]  Noam E. Ziv,et al.  Long-term Relationships between Cholinergic Tone, Synchronous Bursting and Synaptic Remodeling , 2012, PloS one.

[44]  Mark Ellisman,et al.  Assembly of Excitatory Synapses in the Absence of Glutamatergic Neurotransmission , 2017, Neuron.

[45]  Jacob Matz,et al.  Rapid structural alterations of the active zone lead to sustained changes in neurotransmitter release , 2010, Proceedings of the National Academy of Sciences.

[46]  N. Ziv,et al.  Recent insights on principles of synaptic protein degradation , 2017, F1000Research.

[47]  Norio Matsuki,et al.  Spontaneous Plasticity of Multineuronal Activity Patterns in Activated Hippocampal Networks , 2008, Neural plasticity.

[48]  Ryohei Yasuda,et al.  Biochemical Computation for Spine Structural Plasticity , 2015, Neuron.

[49]  Elly Nedivi,et al.  Spine Dynamics: Are They All the Same? , 2017, Neuron.

[50]  A. Craig,et al.  Synapse-Specific Regulation of AMPA Receptor Subunit Composition by Activity , 2005, The Journal of Neuroscience.

[51]  Karel Svoboda,et al.  Rapid Redistribution of Synaptic PSD-95 in the Neocortex In Vivo , 2006, PLoS biology.

[52]  Claudia Clopath,et al.  Variance and invariance of neuronal long-term representations , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[53]  Noam E. Ziv,et al.  Remodeling and Tenacity of Inhibitory Synapses: Relationships with Network Activity and Neighboring Excitatory Synapses , 2015, PLoS Comput. Biol..

[54]  M. Gazzaniga,et al.  On the research of time past: the hunt for the substrate of memory , 2017, Annals of the New York Academy of Sciences.

[55]  H. Markram,et al.  Matched Pre- and Post-Synaptic Changes Underlie Synaptic Plasticity over Long Time Scales , 2013, The Journal of Neuroscience.

[56]  Naama Brenner,et al.  Cooperative stochastic binding and unbinding explain synaptic size dynamics and statistics , 2017, PLoS Comput. Biol..

[57]  Carlos Portera-Cailliau,et al.  Altered Synaptic Dynamics during Normal Brain Aging , 2013, The Journal of Neuroscience.

[58]  Dominique Muller,et al.  LTP Promotes a Selective Long-Term Stabilization and Clustering of Dendritic Spines , 2008, PLoS biology.

[59]  Christos Dimitrakakis,et al.  Network Self-Organization Explains the Statistics and Dynamics of Synaptic Connection Strengths in Cortex , 2013, PLoS Comput. Biol..

[60]  A. Triller,et al.  The Dynamic Synapse , 2013, Neuron.

[61]  H. Kasai,et al.  Principles of Long-Term Dynamics of Dendritic Spines , 2008, The Journal of Neuroscience.

[62]  Adel Zeidan,et al.  Use Dependence of Presynaptic Tenacity , 2011, The Journal of Neuroscience.

[63]  Da-Ting Lin,et al.  Visualization of NMDA receptor-dependent AMPA receptor synaptic plasticity in vivo , 2015, Nature Neuroscience.

[64]  Tobias Bonhoeffer,et al.  Structural plasticity of GABAergic axons is regulated by network activity and GABAA receptor activation , 2013, Front. Neural Circuits.

[65]  T. Jones,et al.  The Long-term Structural Plasticity of Cerebellar Parallel Fiber Axons and Its Modulation by Motor Learning , 2013, The Journal of Neuroscience.

[66]  U Valentin Nägerl,et al.  In Vivo Imaging of Intersynaptic Vesicle Exchange Using VGLUT1Venus Knock-In Mice , 2011, The Journal of Neuroscience.

[67]  G. Turrigiano Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. , 2012, Cold Spring Harbor perspectives in biology.

[68]  Y. Loewenstein,et al.  Multiplicative Dynamics Underlie the Emergence of the Log-Normal Distribution of Spine Sizes in the Neocortex In Vivo , 2011, The Journal of Neuroscience.

[69]  Yu Song,et al.  Nanoscale Scaffolding Domains within the Postsynaptic Density Concentrate Synaptic AMPA Receptors , 2013, Neuron.

[70]  W. Gan,et al.  Long‐term stability of axonal boutons in the mouse barrel cortex , 2016, Developmental neurobiology.

[71]  Anna R. Chambers,et al.  A stable brain from unstable components: Emerging concepts and implications for neural computation , 2017, Neuroscience.

[72]  Mriganka Sur,et al.  Structural and Molecular Remodeling of Dendritic Spine Substructures during Long-Term Potentiation , 2014, Neuron.

[73]  Heikki Rauvala,et al.  [The dynamic synapse]. , 2003, Duodecim; laaketieteellinen aikakauskirja.

[74]  T. Bonhoeffer,et al.  Balance and stability of synaptic structures during synaptic plasticity. , 2014, Neuron.