Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching

An efficient algorithm for isometry-invariant matching of surfaces is presented. The key idea is computing the minimum-distortion mapping between two surfaces. For this purpose, we introduce the generalized multidimensional scaling, a computationally efficient continuous optimization algorithm for finding the least distortion embedding of one surface into another. The generalized multidimensional scaling algorithm allows for both full and partial surface matching. As an example, it is applied to the problem of expression-invariant three-dimensional face recognition.

[1]  Mikhael Gromov Structures métriques pour les variétés riemanniennes , 1981 .

[2]  Eric L. Schwartz,et al.  A Numerical Solution to the Generalized Mapmaker's Problem: Flattening Nonconvex Polyhedral Surfaces , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  H. Walker,et al.  Numerical Linear Algebra with Applications , 1994 .

[4]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[5]  Imre Leader,et al.  Infinite partition regular matrices , 1995, Comb..

[6]  Yehoshua Y. Zeevi,et al.  The farthest point strategy for progressive image sampling , 1997, IEEE Trans. Image Process..

[7]  Shaogang Gong,et al.  Audio- and Video-based Biometric Person Authentication , 1997, Lecture Notes in Computer Science.

[8]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[9]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[10]  Julian Ashbourn,et al.  Biometrics: Advanced Identity Verification , 2000, Springer London.

[11]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[12]  S. Nash A multigrid approach to discretized optimization problems , 2000 .

[13]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[14]  R. Malladi Geometric methods in bio-medical image processing , 2002 .

[15]  Daniel A. Keim,et al.  Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining , 2002, KDD.

[16]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Ron Kimmel,et al.  On Bending Invariant Signatures for Surfaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  R. Kimmel,et al.  An efficient solution to the eikonal equation on parametric manifolds , 2004 .

[19]  Ron Kimmel,et al.  Numerical Geometry of Images , 2003, Springer New York.

[20]  Guillermo Sapiro,et al.  A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..

[21]  Alexander M. Bronstein,et al.  Isometric Embedding of Facial Surfaces into , 2005, Scale-Space.

[22]  Josef Kittler,et al.  Audio- and Video-Based Biometric Person Authentication, 5th International Conference, AVBPA 2005, Hilton Rye Town, NY, USA, July 20-22, 2005, Proceedings , 2005, AVBPA.

[23]  Patrick J. Flynn,et al.  An evaluation of multimodal 2D+3D face biometrics , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Alexander M. Bronstein,et al.  Three-Dimensional Face Recognition , 2005, International Journal of Computer Vision.

[25]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[26]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[27]  Alexander M. Bronstein,et al.  Multigrid multidimensional scaling , 2006, Numer. Linear Algebra Appl..