Enhanced Simulation of Radar Backscatter From Forests Using LiDAR and Optical Data

Focusing on a forest dominated by Poplar Box (Eucalyptus populnea) near Injune in Queensland, Australia, light detection and ranging (LiDAR) and optical remote sensing data are integrated with tree- and stand-level information to parameterize a coherent L-band synthetic aperture radar (SAR) imaging simulation that models microwave penetration and interaction with the canopy, understory, and ground. The approach used LiDAR data to generate a three-dimensional representation of the distribution of tree components (leaves and small branches) by species (based on 1-m3 voxels) and the ground surface. Tree trunks were mapped across a 7.5-ha forest stand using a LiDAR-derived height-scaled crown openness index. Primary and secondary branches were modeled as tapering cylinders and linked the canopy voxels to the LiDAR trunks. The dimensions of vegetation and soil components and their geometric and dielectric properties required by the model were calibrated with field-based measurements. Visual and numerical comparison between NASA JPL Airborne SAR data and the model simulation suggests the effective modeling of SAR imagery at L-band. The study provides a proof-of-concept approach for integrating LiDAR data in the parameterization of coherent SAR simulation models, and the model presents options for better understanding of the information content of SAR data in real forest situations

[1]  Richard M. Lucas,et al.  Microwave scattering from mixed-species forests, Queensland, Australia , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Michael A. Lefsky,et al.  Combining lidar estimates of aboveground biomass and Landsat estimates of stand age for spatially extensive validation of modeled forest productivity , 2005 .

[3]  J. Kong,et al.  Theory of microwave remote sensing , 1985 .

[4]  R. Lang,et al.  Scattering from a layer of discrete random medium over a random interface: application to microwave backscattering from forests , 2004 .

[5]  K. O. Niemann,et al.  Local Maximum Filtering for the Extraction of Tree Locations and Basal Area from High Spatial Resolution Imagery , 2000 .

[6]  I. Burke,et al.  Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests , 2005 .

[7]  Guoqing Sun,et al.  Radiometric slope correction for forest biomass estimation from SAR data in the Western Sayani Mountains, Siberia , 2002 .

[8]  Fawwaz Ulaby,et al.  Microwave Dielectric Spectrum of Vegetation - Part II: Dual-Dispersion Model , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[9]  D G Corr,et al.  Target detection beneath foliage using polarimetric synthetic aperture radar interferometry , 2004 .

[10]  M. L. Williams,et al.  Demonstration of reduced false alarm rates using simulated L-band polarimetric SAR imagery of concealed targets , 2003, 2003 Proceedings of the International Conference on Radar (IEEE Cat. No.03EX695).

[11]  Modelling microwave backscatter from discrete random media using a multiple-scattering series: convergence issues , 1997 .

[12]  C. Hopkinson,et al.  ASSESSING THE THREE-DIMENSIONAL FREQUENCY DISTRIBUTION OF AIRBORNE AND GROUND-BASED LIDAR DATA FOR RED PINE AND MIXED DECIDUOUS FOREST PLOTS , 2004 .

[13]  F. Ulaby,et al.  Radar polarimetry for geoscience applications , 1990 .

[14]  Peter M. Atkinson,et al.  Three-dimensional mapping of light transmittance and foliage distribution using lidar , 2003 .

[15]  Richard M. Lucas,et al.  Radar backscattering model for multilayer mixed-species forests , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[16]  K. Lim,et al.  Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators , 2004 .

[17]  Kerrie Mengersen,et al.  Estimating tree component biomass using variable probability sampling methods , 2001 .

[18]  Yosio Edemir Shimabukuro,et al.  The least-squares mixing models to generate fraction images derived from remote sensing multispectral data , 1991, IEEE Trans. Geosci. Remote. Sens..

[19]  F. Ulaby,et al.  Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[20]  S. Magnussen,et al.  Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators , 1998 .

[21]  W. Cohen,et al.  Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA , 1999 .

[22]  Stephen L. Durden,et al.  Modeling and observation of the radar polarization signature of forested areas , 1989 .

[23]  Chris Varekamp,et al.  High-resolution InSAR image simulation for forest canopies , 2002, IEEE Trans. Geosci. Remote. Sens..

[24]  Riccardo Lanari,et al.  Synthetic Aperture Radar Processing , 1999 .

[25]  David M. Le Vine,et al.  Microwave backscattering and emission model for grass canopies , 1994, IEEE Trans. Geosci. Remote. Sens..

[26]  Juan C. Suárez,et al.  Use of airborne LiDAR and aerial photography in the estimation of individual tree heights in forestry , 2005, Comput. Geosci..

[27]  Ruth E. Davis,et al.  The modeling of forested areas for real and synthetic aperture imaging radar simulation , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[28]  N. Coops,et al.  Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests , 2003 .

[29]  D. A. Hill,et al.  Combined high-density lidar and multispectral imagery for individual tree crown analysis , 2003 .

[30]  W. Burrows,et al.  Allometric relationships and community biomass estimates for some dominant eucalypts in Central Queensland woodlands , 2000 .

[31]  Jaan Praks,et al.  Simulation of Polarimetric Scattering from Forest Canopy , 2002 .

[32]  M. Flood,et al.  LiDAR remote sensing of forest structure , 2003 .

[33]  A. K. Milne,et al.  The potential of synthetic aperture radar (SAR) for quantifying the biomass of Australia's woodlands. , 2000 .

[34]  M. A. Karam,et al.  Electromagnetic scattering from a layer of finite length, randomly oriented, dielectric, circular cylinders over a rough interface with application to vegetation , 1988 .

[35]  V. Naroditsky Wave Propagation in Random Media , 1989 .

[36]  Roger H. Lang,et al.  Electromagnetic Backscattering from a Layer of Vegetation: A Discrete Approach , 1983, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Alex C. Lee,et al.  Quantifying Australian forest floristics and structure using small footprint LiDAR and large scale aerial photography , 2006 .

[38]  R. Hill,et al.  Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data , 2003 .

[39]  Kamal Sarabandi,et al.  A Monte Carlo coherent scattering model for forest canopies using fractal-generated trees , 1999, IEEE Trans. Geosci. Remote. Sens..

[40]  J. Kong Electromagnetic Wave Theory , 1986 .

[41]  D. King,et al.  Development and evaluation of an automated tree detection-delineation algorithm for monitoring regenerating coniferous forests , 2005 .

[42]  J. Holmgren,et al.  Estimation of Tree Height and Stem Volume on Plots Using Airborne Laser Scanning , 2003, Forest Science.

[43]  Thuy Le Toan,et al.  Relating Radar Remote Sensing of Biomass to Modelling of Forest Carbon Budgets , 2004 .

[44]  D. Leckie,et al.  Automated tree recognition in old growth conifer stands with high resolution digital imagery , 2005 .

[45]  Kamal Sarabandi,et al.  Michigan microwave canopy scattering model , 1990 .

[46]  J. Hyyppä,et al.  Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions , 2004 .

[47]  M. Hodgson,et al.  Accuracy of Airborne Lidar-Derived Elevation: Empirical Assessment and Error Budget , 2004 .

[48]  Thuy Le Toan,et al.  Dependence of radar backscatter on coniferous forest biomass , 1992, IEEE Trans. Geosci. Remote. Sens..

[49]  Roger H. Lang,et al.  Electromagnetic backscattering from a sparse distribution of lossy dielectric scatterers , 1981 .

[50]  Emilio Chuvieco,et al.  Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests , 2004 .

[51]  A. Gustavsson,et al.  The airborne VHF SAR system CARABAS , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[52]  G. Harrington Estimation of above-ground biomass of trees and shrubs , 1979 .

[53]  C. Brack,et al.  QUANTIFIYING VERTICAL FOREST STAND STRUCTURE USING SMALL FOOTPRINT LIDAR TO ASSESS POTENTIAL STAND DYNAMICS . , 2004 .

[54]  R. Lucas,et al.  The delineation of tree crowns in Australian mixed species forests using hyperspectral Compact Airborne Spectrographic Imager (CASI) data , 2006 .

[55]  R. Dubayah,et al.  Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest , 2002 .

[56]  Kamal Sarabandi,et al.  Simulation of interferometric SAR response to deciduous and coniferous forest stands , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[57]  Terhikki Manninen,et al.  Modeling the SAR response of pine forest in Southern Finland , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[58]  M. A. Karam,et al.  Scattering from randomly oriented circular discs with application to vegetation , 1983 .

[59]  Mikko Inkinen,et al.  A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners , 2001, IEEE Trans. Geosci. Remote. Sens..

[60]  M. Cochrane Linear mixture model classification of burned forests in the Eastern Amazon , 1998 .