Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass

[1]  Henrik Mouritsen,et al.  Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Thorsten Ritz,et al.  Resonance effects indicate a radical-pair mechanism for avian magnetic compass , 2004, Nature.

[3]  W. Wiltschko,et al.  Light-dependent magnetoreception in birds: analysis of the behaviour under red light after pre-exposure to red light , 2004, Journal of Experimental Biology.

[4]  Baldissera Giovani,et al.  Light-induced electron transfer in a cryptochrome blue-light photoreceptor , 2003, Nature Structural Biology.

[5]  Aziz Sancar,et al.  Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. , 2003, Chemical reviews.

[6]  R. V. Van Gelder,et al.  Reduced Pupillary Light Responses in Mice Lacking Cryptochromes , 2003, Science.

[7]  S. Åkesson,et al.  Magnetic compass orientation in European robins is dependent on both wavelength and intensity of light. , 2002, The Journal of experimental biology.

[8]  R. Haque,et al.  Dual regulation of cryptochrome 1 mRNA expression in chicken retina by light and circadian oscillators , 2002, Neuroreport.

[9]  Onur Güntürkün,et al.  Lateralization of magnetic compass orientation in a migratory bird , 2002, Nature.

[10]  Wolfgang Wiltschko,et al.  Magnetic compass orientation in birds and its physiological basis , 2002, Naturwissenschaften.

[11]  Michael J. Bailey,et al.  Chickens’ Cry2: molecular analysis of an avian cryptochrome in retinal and pineal photoreceptors , 2002, FEBS letters.

[12]  W. Wiltschko,et al.  Light-dependent magnetoreception in birds: the behaviour of European robins, Erithacus rubecula, under monochromatic light of various wavelengths and intensities. , 2001, The Journal of experimental biology.

[13]  C. Green,et al.  Three cryptochromes are rhythmically expressed in Xenopus laevis retinal photoreceptors. , 2001, Molecular Vision.

[14]  C. Kyriacou,et al.  Light-dependent interaction between Drosophila CRY and the clock protein PER mediated by the carboxy terminus of CRY , 2001, Current Biology.

[15]  K. Schulten,et al.  A model for photoreceptor-based magnetoreception in birds. , 2000, Biophysical journal.

[16]  C. Weitz,et al.  Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. , 1999, Science.

[17]  A. Cashmore,et al.  Cryptochromes: blue light receptors for plants and animals. , 1999, Science.

[18]  A. Sancar,et al.  Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[19]  H. P. Zeigier,et al.  Vision, brain, and behavior in birds. , 1994 .

[20]  K. Schulten,et al.  Model for a physiological magnetic compass , 1986 .

[21]  W. Wiltschko,et al.  Neural basis of the magnetic compass: interactions of visual, magnetic and vestibular inputs in the pigeon's brain , 1984, Journal of Comparative Physiology A.

[22]  M. Leask,et al.  A physicochemical mechanism for magnetic field detection by migratory birds and homing pigeons , 1977, Nature.

[23]  B. Schierwater,et al.  Placozoa are not derived cnidarians: evidence from molecular morphology. , 2003, Molecular biology and evolution.

[24]  W. Wiltschko,et al.  Lateralisation of magnetic compass orientation in silvereyes, Zosterops lateralis , 2003 .

[25]  Dr. Roswitha Wiltschko,et al.  Magnetic Orientation in Animals , 1995, Zoophysiology.

[26]  Nino Boccara,et al.  Biophysical Effects of Steady Magnetic Fields , 1986 .