Combinatorial theorems in sparse random sets

We develop a new technique that allows us to show in a unified way that many well-known combinatorial theorems, including Tur\'an's theorem, Szemer\'edi's theorem and Ramsey's theorem, hold almost surely inside sparse random sets. For instance, we extend Tur\'an's theorem to the random setting by showing that for every $\epsilon > 0$ and every positive integer $t \geq 3$ there exists a constant $C$ such that, if $G$ is a random graph on $n$ vertices where each edge is chosen independently with probability at least $C n^{-2/(t+1)}$, then, with probability tending to $1$ as $n$ tends to infinity, every subgraph of $G$ with at least $(1 - \frac{1}{t-1} + \epsilon) e(G)$ edges contains a copy of $K_t$. This is sharp up to the constant $C$. We also show how to prove sparse analogues of structural results, giving two main applications, a stability version of the random Tur\'an theorem stated above and a sparse hypergraph removal lemma. Many similar results have recently been obtained independently in a different way by Schacht and by Friedgut, R\"odl and Schacht.

[1]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[2]  R. Rado Note on Combinatorial Analysis , 1945 .

[3]  K. F. Roth On Certain Sets of Integers , 1953 .

[4]  P. Varnavides,et al.  On Certain Sets of Positive Density , 1959 .

[5]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[6]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[7]  H. Furstenberg,et al.  An ergodic Szemerédi theorem for commuting transformations , 1978 .

[8]  J. Sheehan,et al.  On the number of complete subgraphs contained in certain graphs , 1981, J. Comb. Theory, Ser. B.

[9]  Miklós Simonovits,et al.  Supersaturated graphs and hypergraphs , 1983, Comb..

[10]  Vojtech Rödl,et al.  Large triangle-free subgraphs in graphs withoutK4 , 1986, Graphs Comb..

[11]  Svante Janson,et al.  Poisson Approximation for Large Deviations , 1990, Random Struct. Algorithms.

[12]  Andrzej Rucinski,et al.  Ramsey properties of random graphs , 1992, J. Comb. Theory, Ser. B.

[13]  Zoltán Füredi,et al.  Random Ramsey graphs for the four-cycle , 1994, Discret. Math..

[14]  Vojtech Rödl,et al.  Random Graphs with Monochromatic Triangles in Every Edge Coloring , 1994, Random Struct. Algorithms.

[15]  M. Talagrand Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.

[16]  V. Rödl,et al.  Threshold functions for Ramsey properties , 1995 .

[17]  Yoshiharu Kohayakawa,et al.  Turán's Extremal Problem in Random Graphs: Forbidding Even Cycles , 1995, J. Comb. Theory, Ser. B.

[18]  Y. Kohayakawa,et al.  Turán's extremal problem in random graphs: Forbidding odd cycles , 1996, Comb..

[19]  Vitaly Bergelson,et al.  Polynomial extensions of van der Waerden’s and Szemerédi’s theorems , 1996 .

[20]  Vojtech Rödl,et al.  On Schur Properties of Random Subsets of Integers , 1996 .

[21]  V. Rödl,et al.  Arithmetic progressions of length three in subsets of a random set , 1996 .

[22]  Andrzej Ruciński,et al.  Rado Partition Theorem for Random Subsets of Integers , 1997 .

[23]  T. Lu ON K4-FREE SUBGRAPHS OF RANDOM GRAPHS , 1997 .

[24]  Y. Kohayakawa Szemerédi's regularity lemma for sparse graphs , 1997 .

[25]  Vojtech Rödl,et al.  Ramsey Properties of Random Hypergraphs , 1998, J. Comb. Theory, Ser. A.

[26]  E. Friedgut,et al.  Sharp thresholds of graph properties, and the -sat problem , 1999 .

[27]  Michael Krivelevich,et al.  Sharp Thresholds for Ramsey Properties of Random Graphs , 1999 .

[28]  Tomasz Łuczak,et al.  On triangle-free random graphs , 2000 .

[29]  Tomasz Luczak On triangle-free random graphs , 2000, Random Struct. Algorithms.

[30]  Zoltán Füredi,et al.  The Maximum Size of 3-Uniform Hypergraphs Not Containing a Fano Plane , 2000, J. Comb. Theory, Ser. B.

[31]  W. T. Gowers,et al.  A new proof of Szemerédi's theorem , 2001 .

[32]  W. T. Gowers,et al.  A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .

[33]  Van H. Vu,et al.  A Large Deviation Result on the Number of Small Subgraphs of a Random Graph , 2001, Combinatorics, Probability and Computing.

[34]  Svante Janson,et al.  The infamous upper tail , 2002, Random Struct. Algorithms.

[35]  Tibor Szabó,et al.  Turán's theorem in sparse random graphs , 2003, Random Struct. Algorithms.

[36]  Svante Janson,et al.  The Deletion Method For Upper Tail Estimates , 2004, Comb..

[37]  Yoshiharu Kohayakawa,et al.  Small subsets inherit sparse ε-regularity , 2004 .

[38]  S. Janson,et al.  Upper tails for subgraph counts in random graphs , 2004 .

[39]  T. Tao,et al.  The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.

[40]  Stefanie Gerke,et al.  K5-free subgraphs of random graphs , 2004, Random Struct. Algorithms.

[41]  Yoshiharu Kohayakawa,et al.  The Turán Theorem for Random Graphs , 2004, Comb. Probab. Comput..

[42]  Vojtech Rödl,et al.  Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.

[43]  Benny Sudakov,et al.  The Turán Number Of The Fano Plane , 2005, Comb..

[44]  Miklós Simonovits,et al.  Triple Systems Not Containing a Fano Configuration , 2005, Comb. Probab. Comput..

[45]  W. T. Gowers,et al.  Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[46]  Terence Tao A variant of the hypergraph removal lemma , 2006, J. Comb. Theory, Ser. A.

[47]  T. Tao,et al.  The primes contain arbitrarily long polynomial progressions , 2006, math/0610050.

[48]  Vojtech Rödl,et al.  A sharp threshold for random graphs with a monochromatic triangle in every edge coloring , 2006, Memoirs of the American Mathematical Society.

[49]  Vojtech Rödl,et al.  The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.

[50]  T. Luczak Randomness and regularity , 2006 .

[51]  Anusch Taraz,et al.  K4-free subgraphs of random graphs revisited , 2007, Comb..

[52]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[53]  Vojtech Rödl,et al.  Ramsey Properties of Random k-Partite, k-Uniform Hypergraphs , 2007, SIAM J. Discret. Math..

[54]  Arithmetic structures in random sets , 2007, math/0703749.

[55]  Yoshiharu Kohayakawa,et al.  Small subsets inherit sparse epsilon-regularity , 2007, J. Comb. Theory, Ser. B.

[56]  Madhur Tulsiani,et al.  Dense Subsets of Pseudorandom Sets , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[57]  W. T. Gowers,et al.  Decompositions, approximate structure, transference, and the Hahn–Banach theorem , 2008, 0811.3103.

[58]  On Two-Point Configurations in a Random Set , 2008, 0811.1312.

[59]  Svante Janson,et al.  Upper tails for counting objects in randomly induced subhypergraphs and rooted random graphs , 2011 .

[60]  J. Balogh,et al.  Independent sets in hypergraphs , 2012, 1204.6530.

[61]  D. Saxton,et al.  Hypergraph containers , 2012, 1204.6595.