Combinatorial theorems in sparse random sets
暂无分享,去创建一个
[1] Frank Plumpton Ramsey,et al. On a Problem of Formal Logic , 1930 .
[2] R. Rado. Note on Combinatorial Analysis , 1945 .
[3] K. F. Roth. On Certain Sets of Integers , 1953 .
[4] P. Varnavides,et al. On Certain Sets of Positive Density , 1959 .
[5] E. Szemerédi. Regular Partitions of Graphs , 1975 .
[6] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[7] H. Furstenberg,et al. An ergodic Szemerédi theorem for commuting transformations , 1978 .
[8] J. Sheehan,et al. On the number of complete subgraphs contained in certain graphs , 1981, J. Comb. Theory, Ser. B.
[9] Miklós Simonovits,et al. Supersaturated graphs and hypergraphs , 1983, Comb..
[10] Vojtech Rödl,et al. Large triangle-free subgraphs in graphs withoutK4 , 1986, Graphs Comb..
[11] Svante Janson,et al. Poisson Approximation for Large Deviations , 1990, Random Struct. Algorithms.
[12] Andrzej Rucinski,et al. Ramsey properties of random graphs , 1992, J. Comb. Theory, Ser. B.
[13] Zoltán Füredi,et al. Random Ramsey graphs for the four-cycle , 1994, Discret. Math..
[14] Vojtech Rödl,et al. Random Graphs with Monochromatic Triangles in Every Edge Coloring , 1994, Random Struct. Algorithms.
[15] M. Talagrand. Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.
[16] V. Rödl,et al. Threshold functions for Ramsey properties , 1995 .
[17] Yoshiharu Kohayakawa,et al. Turán's Extremal Problem in Random Graphs: Forbidding Even Cycles , 1995, J. Comb. Theory, Ser. B.
[18] Y. Kohayakawa,et al. Turán's extremal problem in random graphs: Forbidding odd cycles , 1996, Comb..
[19] Vitaly Bergelson,et al. Polynomial extensions of van der Waerden’s and Szemerédi’s theorems , 1996 .
[20] Vojtech Rödl,et al. On Schur Properties of Random Subsets of Integers , 1996 .
[21] V. Rödl,et al. Arithmetic progressions of length three in subsets of a random set , 1996 .
[22] Andrzej Ruciński,et al. Rado Partition Theorem for Random Subsets of Integers , 1997 .
[23] T. Lu. ON K4-FREE SUBGRAPHS OF RANDOM GRAPHS , 1997 .
[24] Y. Kohayakawa. Szemerédi's regularity lemma for sparse graphs , 1997 .
[25] Vojtech Rödl,et al. Ramsey Properties of Random Hypergraphs , 1998, J. Comb. Theory, Ser. A.
[26] E. Friedgut,et al. Sharp thresholds of graph properties, and the -sat problem , 1999 .
[27] Michael Krivelevich,et al. Sharp Thresholds for Ramsey Properties of Random Graphs , 1999 .
[28] Tomasz Łuczak,et al. On triangle-free random graphs , 2000 .
[29] Tomasz Luczak. On triangle-free random graphs , 2000, Random Struct. Algorithms.
[30] Zoltán Füredi,et al. The Maximum Size of 3-Uniform Hypergraphs Not Containing a Fano Plane , 2000, J. Comb. Theory, Ser. B.
[31] W. T. Gowers,et al. A new proof of Szemerédi's theorem , 2001 .
[32] W. T. Gowers,et al. A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .
[33] Van H. Vu,et al. A Large Deviation Result on the Number of Small Subgraphs of a Random Graph , 2001, Combinatorics, Probability and Computing.
[34] Svante Janson,et al. The infamous upper tail , 2002, Random Struct. Algorithms.
[35] Tibor Szabó,et al. Turán's theorem in sparse random graphs , 2003, Random Struct. Algorithms.
[36] Svante Janson,et al. The Deletion Method For Upper Tail Estimates , 2004, Comb..
[37] Yoshiharu Kohayakawa,et al. Small subsets inherit sparse ε-regularity , 2004 .
[38] S. Janson,et al. Upper tails for subgraph counts in random graphs , 2004 .
[39] T. Tao,et al. The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.
[40] Stefanie Gerke,et al. K5-free subgraphs of random graphs , 2004, Random Struct. Algorithms.
[41] Yoshiharu Kohayakawa,et al. The Turán Theorem for Random Graphs , 2004, Comb. Probab. Comput..
[42] Vojtech Rödl,et al. Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.
[43] Benny Sudakov,et al. The Turán Number Of The Fano Plane , 2005, Comb..
[44] Miklós Simonovits,et al. Triple Systems Not Containing a Fano Configuration , 2005, Comb. Probab. Comput..
[45] W. T. Gowers,et al. Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.
[46] Terence Tao. A variant of the hypergraph removal lemma , 2006, J. Comb. Theory, Ser. A.
[47] T. Tao,et al. The primes contain arbitrarily long polynomial progressions , 2006, math/0610050.
[48] Vojtech Rödl,et al. A sharp threshold for random graphs with a monochromatic triangle in every edge coloring , 2006, Memoirs of the American Mathematical Society.
[49] Vojtech Rödl,et al. The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.
[50] T. Luczak. Randomness and regularity , 2006 .
[51] Anusch Taraz,et al. K4-free subgraphs of random graphs revisited , 2007, Comb..
[52] W. T. Gowers,et al. Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.
[53] Vojtech Rödl,et al. Ramsey Properties of Random k-Partite, k-Uniform Hypergraphs , 2007, SIAM J. Discret. Math..
[54] Arithmetic structures in random sets , 2007, math/0703749.
[55] Yoshiharu Kohayakawa,et al. Small subsets inherit sparse epsilon-regularity , 2007, J. Comb. Theory, Ser. B.
[56] Madhur Tulsiani,et al. Dense Subsets of Pseudorandom Sets , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.
[57] W. T. Gowers,et al. Decompositions, approximate structure, transference, and the Hahn–Banach theorem , 2008, 0811.3103.
[58] On Two-Point Configurations in a Random Set , 2008, 0811.1312.
[59] Svante Janson,et al. Upper tails for counting objects in randomly induced subhypergraphs and rooted random graphs , 2011 .
[60] J. Balogh,et al. Independent sets in hypergraphs , 2012, 1204.6530.
[61] D. Saxton,et al. Hypergraph containers , 2012, 1204.6595.