Slope Intervals, Generalized Gradients, Semigradients, Slant Derivatives, and Csets

AbstractMany practical optimization problems are nonsmooth, and derivative-type methods cannot be applied. To overcome this difficulty, there are different concepts to replace the derivative of a function f : $$\mathbb{R}^n \to \mathbb{R}$$ : interval slopes, semigradients, generalized gradients, and slant derivatives are some examples. These approaches generalize the success of convex analysis, and are effective in optimization. However, with the exception of interval slopes, it is not clear how to automatically compute these; having a general analogue to the chain rule, interval slopes can be computed with automatic differentiation techniques. In this paper we study the relationships among these approaches for nonsmooth Lipschitz optimization problems in finite dimensional Euclidean spaces. Inclusion theorems concerning the equivalence of these concepts when there exist one sided derivatives in one dimension and in multidimensional cases are proved separately. Valid enclosures are produced. Under containment set (cset) theory, for instance, the cset of the gradient of a locally Lipschitz function f near x is included in its generalized gradient.

[1]  Ramon E. Moore Interval arithmetic and automatic error analysis in digital computing , 1963 .

[2]  R. Rockafellar Directionally Lipschitzian Functions and Subdifferential Calculus , 1979 .

[3]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[4]  E. Hansen Global optimization using interval analysis — the multi-dimensional case , 1980 .

[5]  Saumyendra Sengupta,et al.  GLOBAL CONSTRAINED OPTIMIZATION USING INTERVAL ANALYSIS , 1980 .

[6]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[7]  Jon G. Rokne,et al.  Computer Methods for the Range of Functions , 1984 .

[8]  A. Neumaier,et al.  Interval Slopes for Rational Functions and Associated Centered Forms , 1985 .

[9]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[10]  A. Neumaier,et al.  Solving minimax problems by interval methods , 1990 .

[11]  A. Shapiro On concepts of directional differentiability , 1990 .

[12]  A. Neumaier Interval methods for systems of equations , 1990 .

[13]  S. Simons,et al.  The least slope of a convex function and the maximal monotonicity of its subdifferential , 1991 .

[14]  H. Ratschek,et al.  Interval tools for global optimization , 1991 .

[15]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[16]  Dietmar Ratz,et al.  Automatische Ergebnisverifikation bei globalen Optimierungsproblemen , 1992 .

[17]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[18]  M. A. Wolfe,et al.  An interval algorithm for nondifferentiable global optimization , 1994 .

[19]  R. Rockafellar Equivalent Subgradient Versions of Hamiltonian and Euler--Llagrange Equations in Variational Analysis , 1996 .

[20]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[21]  Helmut Ratschek,et al.  Global Interval Methods for Local Nonsmooth Optimization , 1999, J. Glob. Optim..

[22]  J. Treiman,et al.  Lagrange Multipliers for Nonconvex Generalized Gradients with Equality, Inequality, and Set Constraints , 1999 .

[23]  Jacques Gauvin,et al.  Lipschitz-Type Stability in Nonsmooth Convex Programs , 1999, SIAM J. Control. Optim..

[24]  R. Baker Kearfott,et al.  Treating Non-Smooth Functions as Smooth Functions in Global Optimization and Nonlinear Systems Solvers , 2000 .

[25]  Xiaojun Chen,et al.  Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations , 2000, SIAM J. Numer. Anal..

[26]  Dirk Aeyels,et al.  Optimization of Discontinuous Functions: A Generalized Theory of Differentiation , 2000, SIAM J. Optim..

[27]  Dietmar Ratz,et al.  Nonsmooth Global Optimization , 2001, Perspectives on Enclosure Methods.

[28]  E. Lieb,et al.  Analysis, Second edition , 2001 .

[29]  R. Baker Kearfott,et al.  Interval extensions of non-smooth functions for global optimization and nonlinear systems solvers , 1996, Computing.