High-accuracy thermodynamic properties to the melting point from ab initio calculations aided by machine-learning potentials

[1]  A. Ruban,et al.  Ab initio surface free energies of tungsten with full account of thermal excitations , 2022, Physical Review B.

[2]  Jonathan P. Mailoa,et al.  E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials , 2021, Nature Communications.

[3]  A. Shapeev,et al.  Magnetic Moment Tensor Potentials for collinear spin-polarized materials reproduce different magnetic states of bcc Fe , 2020, npj Computational Materials.

[4]  P. Srinivasan,et al.  Thermodynamics up to the melting point in a TaVCrW high entropy alloy: Systematic ab initio study aided by machine learning potentials , 2022 .

[5]  P. Korzhavyi,et al.  First-principles modeling of solute effects on thermal properties of nickel alloys , 2021 .

[6]  Zi-kui Liu,et al.  DFTTK: Density Functional Theory ToolKit for high-throughput lattice dynamics calculations , 2021, Calphad.

[7]  Cas van der Oord,et al.  Performant implementation of the atomic cluster expansion (PACE) and application to copper and silicon , 2021, npj Computational Materials.

[8]  Jonas A. Finkler,et al.  A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer , 2020, Nature Communications.

[9]  Alexander V. Shapeev,et al.  The MLIP package: moment tensor potentials with MPI and active learning , 2020, Mach. Learn. Sci. Technol..

[10]  D. Passerone,et al.  Anharmonic effects on the dynamics of solid aluminium from ab initio simulations , 2020, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  M. Ceriotti,et al.  Finite-temperature materials modeling from the quantum nuclei to the hot electron regime , 2020, 2011.03874.

[12]  Y. Ikeda,et al.  Frontiers in atomistic simulations of high entropy alloys , 2020, Journal of Applied Physics.

[13]  K. An,et al.  Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy , 2020, Science Advances.

[14]  Aliaksandr V. Yakutovich,et al.  Materials Cloud, a platform for open computational science , 2020, Scientific Data.

[15]  I. Abrikosov,et al.  Temperature dependence of the Kohn anomaly in bcc Nb from first-principles self-consistent phonon calculations , 2020 .

[16]  J. Behler,et al.  A Performance and Cost Assessment of Machine Learning Interatomic Potentials. , 2019, The journal of physical chemistry. A.

[17]  C. Davies,et al.  FeO Content of Earth’s Liquid Core , 2019, Physical Review X.

[18]  Edgar Dutra Zanotto,et al.  Understanding Glass through Differential Scanning Calorimetry. , 2019, Chemical reviews.

[19]  Claudia Draxl,et al.  The NOMAD laboratory: from data sharing to artificial intelligence , 2019, Journal of Physics: Materials.

[20]  Y. Ikeda,et al.  Ab initio vibrational free energies including anharmonicity for multicomponent alloys , 2019, npj Computational Materials.

[21]  Fredrik Eriksson,et al.  The Hiphive Package for the Extraction of High‐Order Force Constants by Machine Learning , 2018, Advanced Theory and Simulations.

[22]  A. Ruban,et al.  Temperature dependence of the stacking-fault Gibbs energy for Al, Cu, and Ni , 2018, Physical Review B.

[23]  Conrad W. Rosenbrock,et al.  General machine-learning surrogate models for materials prediction , 2018, 1809.09203.

[24]  C. Dellago,et al.  Melting Si: Beyond Density Functional Theory. , 2018, Physical review letters.

[25]  Roger C. Reed,et al.  Temperature dependence of the Gibbs energy of vacancy formation of fcc Ni , 2018, Physical Review B.

[26]  B. Grabowski,et al.  Anomalous Phonon Lifetime Shortening in Paramagnetic CrN Caused by Spin-Lattice Coupling: A Combined Spin and Ab Initio Molecular Dynamics Study. , 2018, Physical review letters.

[27]  Blazej Grabowski,et al.  Efficient approach to compute melting properties fully from ab initio with application to Cu , 2017 .

[28]  Y. Ikeda,et al.  Phonon broadening in high entropy alloys , 2017, npj Computational Materials.

[29]  J. Arblaster The Thermodynamic Properties of Niobium , 2017 .

[30]  B. Grabowski,et al.  Computationally-driven engineering of sublattice ordering in a hexagonal AlHfScTiZr high entropy alloy , 2017, Scientific Reports.

[31]  Fritz Körmann,et al.  Accurate electronic free energies of the 3 d ,4 d , and 5 d transition metals at high temperatures , 2017 .

[32]  Stefano Curtarolo,et al.  How the Chemical Composition Alone Can Predict Vibrational Free Energies and Entropies of Solids , 2017, 1703.02309.

[33]  Ankit K. Gupta,et al.  Low-temperature features in the heat capacity of unary metals and intermetallics for the example of bulk aluminum and Al3Sc , 2017, 1701.06999.

[34]  S. Crockett,et al.  Multiphase aluminum equations of state via density functional theory , 2016 .

[35]  C. Tasan,et al.  From electronic structure to phase diagrams: A bottom-up approach to understand the stability of titanium–transition metal alloys , 2016 .

[36]  Alexander V. Shapeev,et al.  Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials , 2015, Multiscale Model. Simul..

[37]  Muratahan Aykol,et al.  The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies , 2015 .

[38]  D. Minakov,et al.  Melting curves of metals with excited electrons in the quasiharmonic approximation , 2015 .

[39]  Blazej Grabowski,et al.  Improved method of calculating ab initio high-temperature thermodynamic properties with application to ZrC , 2015 .

[40]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[41]  C. Tasan,et al.  Origin of shear induced β to ω transition in Ti–Nb-based alloys , 2015 .

[42]  B. Grabowski,et al.  Random phase approximation up to the melting point: Impact of anharmonicity and nonlocal many-body effects on the thermodynamics of Au , 2015 .

[43]  B. Grabowski,et al.  Understanding Anharmonicity in fcc Materials: From its Origin to ab initio Strategies beyond the Quasiharmonic Approximation. , 2015, Physical review letters.

[44]  Adrienn Ruzsinszky,et al.  Strongly Constrained and Appropriately Normed Semilocal Density Functional. , 2015, Physical review letters.

[45]  Cormac Toher,et al.  Charting the complete elastic properties of inorganic crystalline compounds , 2015, Scientific Data.

[46]  S. Stankus,et al.  Density and Thermal Expansion of High Purity Nickel over the Temperature Range from 150 K to 2030 K , 2015, International Journal of Thermophysics.

[47]  S. Stankus,et al.  Density and Thermal Expansion of High Purity Nickel over the Temperature Range from 150 K to 2030 K , 2015 .

[48]  R. Arróyave,et al.  Ab-initio calculations of the elastic and finite-temperature thermodynamic properties of niobium- and magnesium hydrides , 2014 .

[49]  X. Feaugas,et al.  Contribution of the entropy on the thermodynamic equilibrium of vacancies in nickel. , 2014, The Journal of chemical physics.

[50]  B. Grabowski,et al.  Breakdown of the Arrhenius Law in Describing Vacancy Formation Energies , 2014 .

[51]  Zi-kui Liu,et al.  Thermodynamic and mechanical properties of lanthanum–magnesium phases from density functional theory , 2012 .

[52]  Blazej Grabowski,et al.  Temperature-driven phase transitions from first principles including all relevant excitations: The fcc-to-bcc transition in Ca , 2011 .

[53]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[54]  R. Arróyave,et al.  Finite-temperature elasticity of fcc Al: Atomistic simulations and ultrasonic measurements , 2011 .

[55]  B. Grabowski,et al.  Formation energies of point defects at finite temperatures , 2011 .

[56]  A. Dick,et al.  Role of spin quantization in determining the thermodynamic properties of magnetic transition metals , 2011 .

[57]  S. I. Simak,et al.  Lattice dynamics of anharmonic solids from first principles , 2011, 1103.5590.

[58]  S. Narasimhan,et al.  Harmonic and anharmonic properties of Fe and Ni: Thermal expansion, exchange-correlation errors, and magnetism , 2010 .

[59]  M. Sluiter,et al.  Origin of predominance of cementite among iron carbides in steel at elevated temperature. , 2010, Physical review letters.

[60]  Christophe Chipot,et al.  Good practices in free-energy calculations. , 2010, The journal of physical chemistry. B.

[61]  Blazej Grabowski,et al.  Ab initio up to the melting point: Anharmonicity and vacancies in aluminum , 2009 .

[62]  M I Katsnelson,et al.  Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory. , 2008, Physical review letters.

[63]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[64]  Blazej Grabowski,et al.  Ab initio study of the thermodynamic properties of nonmagnetic elementary fcc metals: Exchange-correlation-related error bars and chemical trends , 2007 .

[65]  Yaozhuang Nie,et al.  Ab initio thermodynamics of the hcp metals Mg, Ti, and Zr , 2007 .

[66]  B. Johansson,et al.  Temperature-induced longitudinal spin fluctuations in Fe and Ni , 2007 .

[67]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[68]  G. D. Price,et al.  Ab initio thermodynamics and phase diagram of solid magnesium: a comparison of the LDA and GGA. , 2006, The Journal of chemical physics.

[69]  A. Einstein Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme [AdP 22, 180 (1907)] , 2005 .

[70]  W. A. Oates,et al.  Phase diagram calculation: past, present and future , 2004 .

[71]  Y. Ma,et al.  Elastic constants of face-centered cubic and L12 Ni-Si alloys: Composition and temperature dependence , 2003 .

[72]  Lidunka Vočadlo,et al.  Possible thermal and chemical stabilization of body-centred-cubic iron in the Earth's core , 2003, Nature.

[73]  Wilfred F. van Gunsteren,et al.  Computation of free energy , 2002 .

[74]  Lidunka Vočadlo,et al.  Ab initio melting curve of the fcc phase of aluminum , 2002 .

[75]  G. Ceder,et al.  The effect of lattice vibrations on substitutional alloy thermodynamics , 2001, cond-mat/0106490.

[76]  R. Reeber,et al.  The perfect crystal, thermal vacancies and the thermal expansion coefficient of aluminium , 2000 .

[77]  B. Johansson,et al.  Origin of the Invar effect in iron–nickel alloys , 1999, Nature.

[78]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[79]  Robert R. Reeber,et al.  The role of defects on thermophysical properties : thermal expansion of V, Nb, Ta, Mo and W , 1998 .

[80]  M. Gillan,et al.  First-order phase transitions by first-principles free-energy calculations: the melting of Al , 1998 .

[81]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[82]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[83]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[84]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[85]  B. Hennion,et al.  Lattice dynamics and self-diffusion in niobium at elevated temperatures , 1994 .

[86]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[87]  A. Dinsdale SGTE data for pure elements , 1991 .

[88]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[89]  H. G. Petersen,et al.  Error estimates on averages of correlated data , 1989 .

[90]  Janak,et al.  Calculated thermal properties of metals. , 1988, Physical review. B, Condensed matter.

[91]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[92]  Y. Chuang,et al.  Magnetic contributions to the thermodynamic functions of pure Ni, Co, and Fe , 1985 .

[93]  M. Peter,et al.  Elastic constants in Nb-Mo alloys from zero temperature to the melting point: experiment and theory , 1981 .

[94]  J. L. Olsen,et al.  Phonon States of Elements. Electron States and Fermi Surfaces of Alloys , 1981 .

[95]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[96]  T. Schneider,et al.  Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions , 1978 .

[97]  Y. S. Touloukian Thermal Expansion: Metallic Elements and Alloys , 1975 .

[98]  Larry Kaufman,et al.  Computer calculation of phase diagrams with special reference to refractory metals , 1970 .

[99]  J. Bell,et al.  Experiment and Theory , 1968 .

[100]  N. Mermin Thermal Properties of the Inhomogeneous Electron Gas , 1965 .

[101]  C. W. Garland,et al.  Elastic Constants of Magnesium from 4.2°K to 300°K , 1957 .

[102]  R. Zwanzig High‐Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases , 1954 .

[103]  J. Buchanan On the Compressibility of Solids , 1904, Proceedings of the Royal Society of London.