Real-time gaze control of an active head-eye system without calibration

This article describes real-time gaze control using position-based visual servoing. The main control objective of the system is to enable a gaze point to track the target so that the image feature of the target is located at each image center. The overall system consists of two parts: the vision process and the control system. The vision system extracts a predefined color feature from images. An adaptive look-up table method is proposed in order to get the 3-D position of the feature within the video frame rate under varying illumination. An uncalibrated camera raises the problem of the reconstructed 3-D positions not being correct. To solve the calibration problem in the position-based approach, we constructed an end-point closed-loop system using an active head-eye system. In the proposed control system, the reconstructed position error is used with a Jacobian matrix of the kinematic relation. The system stability is locally guaranteed, like image-based visual servoing, and the gaze position was shown to converge to the feature position. The proposed approach was successfully applied to a tracking task with a moving target in some simulations and some real experiments. The processing speed satisfies the property of real time.