Use of MODIS Images to Quantify the Radiation and Energy Balances in the Brazilian Pantanal

MODIS images during the year 2012 were used for modelling of the radiation and energy balance components with the application of the SAFER algorithm (Simple Algorithm for Evapotranspiration Retrieving) in the Brazilian Pantanal area. Pixels from the main sub-regions of Barao de Melgaco (BR), Paiaguas (PA) and Nhecolândia (NH) were extracted in order to process microclimatic comparisons. In general, the net radiation (Rn) relied much more on the global solar radiation (RG) levels than on water conditions and ecosystem types, in accordance with the low Rn standard deviation values. The fraction of the available energy used as latent heat flux (λE) were, on average, 65, 50 and 49% for the BR, PA and NH sub-regions, respectively. Horizontal heat advection, identified by the negative values of sensible heat flux (H), made several pixels with λE values higher than those for Rn in the middle of the year. Taking the evaporative fraction (Ef) as a surface moisture indicator, the Tree-Lined Savanna (TLS) was considered the moister ecosystem class, with 58% of the available energy being used as λE, while the driest one was the modified ecosystem Anthropogenic Changes (AC), presenting a λE/Rn fraction of 0.46. According to the spatial and temporal consistencies, and after comparisons with other previous point and large-scale studies, the SAFER algorithm proved to have sensibility to quantify and compare the large-scale radiation and energy balance components in the different ecosystems of the Brazilian Pantanal. The algorithm is useful for monitoring the energy exchange dynamics among the different terrestrial and aquatic ecosystem types throughout the seasons of the year.

[1]  James L. Wright,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications , 2007 .

[2]  Yosio Edemir Shimabukuro,et al.  Estudo da dinâmica espaço-temporal do bioma Pantanal por meio de imagens MODIS , 2008 .

[3]  Jun Asanuma,et al.  Energy partitioning and its biophysical controls above a grazing steppe in central Mongolia , 2006 .

[4]  Massimo Menenti,et al.  S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance , 2000 .

[5]  G. Pereira,et al.  Evaluation of reduction of Pantanal wetlands in 2012 , 2013 .

[6]  Ernesto Lopez-Baeza,et al.  Narrow-band to broad-band conversion for Meteosat-visiible channel and broad-band albedo using both AVHRR-1 and -2 channels , 1995 .

[7]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[8]  Pamela L. Nagler,et al.  Estimating Riparian and Agricultural Actual Evapotranspiration by Reference Evapotranspiration and MODIS Enhanced Vegetation Index , 2013, Remote. Sens..

[9]  Fernando Braz Tangerino Hernandez,et al.  Energy balance with Landsat images in irrigated central pivots with corn crop in the São Paulo State, Brazil , 2014, Remote Sensing.

[10]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[11]  D. Lobell,et al.  Moisture effects on soil reflectance , 2002 .

[12]  P. Binning,et al.  Estimating evapotranspiration for a temperate salt marsh, Newcastle, Australia , 2001 .

[13]  Janice F. Leivas,et al.  Coupling MODIS images and agrometeorological data for agricultural water productivity analyses in the Mato Grosso State, Brazil , 2014, Remote Sensing.

[14]  M. Biudes,et al.  Interannual Variability of Energy Flux in Atmospheric Instability Conditions at Pantanal of Mato Grosso-Brazil , 2012 .

[15]  W. J. Shuttleworth,et al.  Evaporation from Amazonian rainforest , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  Richard G. Allen,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model , 2007 .

[17]  R. Lamparelli,et al.  Supervised classification applied to vegetation mapping in the Barao de Melgaco Municipality (Mato Grosso State, Brazil), using MODIS imagery , 2013 .

[18]  J. S. Oguntoyinbo,et al.  Reflection coefficient of natural vegetation, crops and urban surfaces in Nigeria , 1970 .

[19]  Michael R. Raupach,et al.  Combination theory and equilibrium evaporation , 2001 .

[20]  Antônio H. de C. Teixeira,et al.  Determining Regional Actual Evapotranspiration of Irrigated Crops and Natural Vegetation in the São Francisco River Basin (Brazil) Using Remote Sensing and Penman-Monteith Equation , 2010, Remote. Sens..

[21]  T. J. Majumdar,et al.  On the utilization of ENVISAT AATSR data for geological/hydrological applications , 2007 .

[22]  R. G. Andrade,et al.  Geotecnologias aplicadas à avaliação de parâmetros biofísicos do Pantanal , 2012 .

[23]  Ayse Kilic,et al.  Estimating Crop Coefficients Using Remote Sensing-Based Vegetation Index , 2013, Remote. Sens..

[24]  Martha C. Anderson,et al.  Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX’08 field campaign , 2012 .

[25]  Wim G.M. Bastiaanssen,et al.  Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low - Middle Sao Francisco River basin, Brazil : part A : calibration and validation , 2009 .

[26]  T. Eck,et al.  The albedo of a tropical evergreen forest , 1980 .

[27]  J. Monteith,et al.  Principles of Environmental Physics , 2014 .

[28]  Janice F. Leivas,et al.  Large-Scale Water Productivity Assessments with MODIS Images in a Changing Semi-Arid Environment: A Brazilian Case Study , 2013, Remote. Sens..

[29]  W. Junk,et al.  Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil , 2006, Aquatic Sciences.

[30]  T. Setter,et al.  Agricultural use of wetlands: opportunities and limitations. , 2010, Annals of botany.

[31]  L. Bassoi,et al.  A Comparative Study of Techniques for Modeling the Spatiotemporal Distribution of Heat and Moisture Fluxes at Different Agroecosystems in Brazil , 2013 .

[32]  M. Litvak,et al.  Factors that control Typha marsh evapotranspiration , 2007 .

[33]  T. Holmes,et al.  Global land-surface evaporation estimated from satellite-based observations , 2010 .

[34]  S. Running,et al.  Regional evaporation estimates from flux tower and MODIS satellite data , 2007 .

[35]  G. Vourlitis,et al.  Seasonal Patterns of Evapotranspiration for a Vochysia divergens Forest in the Brazilian Pantanal , 2011, Wetlands.

[36]  L. S. Pereira,et al.  Using remote sensing energy balance and evapotranspiration to characterize montane landscape vegetation with focus on grass and pasture lands , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[37]  S. Lyster,et al.  Convention on Wetlands of International Importance Especially as Waterfowl Habitat , 2019, Dictionary of Geotourism.

[38]  Wim G.M. Bastiaanssen,et al.  Analysis of energy fluxes and vegetation-atmosphere parameters in irrigated and natural ecosystems of semi-arid Brazil , 2008 .

[39]  Yinsheng Zhang,et al.  Environmental controls on evapotranspiration from sparse grassland in Mongolia , 2007 .

[40]  A. Dijk,et al.  Micrometeorology and water use of mixed crops in upland West Java, Indonesia. , 2004 .

[41]  Z. Su The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes , 2002 .

[42]  Tetsuya Hiyama,et al.  Effects of the introduction of rice on evapotranspiration in seasonal wetlands , 2014 .