The cellulosome and cellulose degradation by anaerobic bacteria

[1]  V. Zverlov,et al.  The binding pattern of two carbohydrate-binding modules of laminarinase Lam16A from Thermotoga neapolitana: differences in beta-glucan binding within family CBM4. , 2001, Microbiology.

[2]  M. Schülein Protein engineering of cellulases. , 2000, Biochimica et biophysica acta.

[3]  C. Tardif,et al.  Gene transfer to Clostridium cellulolyticum ATCC 35319. , 2000, Microbiology.

[4]  C Cambillau,et al.  Crystal structure of a cohesin module from Clostridium cellulolyticum: implications for dockerin recognition. , 2000, Journal of molecular biology.

[5]  B. Henrissat,et al.  NMR SOLUTION STRUCTURE OF THE LAST UNKNOWN MODULE OF THE CELLULOSOMAL SCAFFOLDIN PROTEIN CIPC OF CLOSTRIDUM CELLULOLYTICUM , 2000 .

[6]  R. Betts,et al.  Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model , 2000, Nature.

[7]  S. Karita,et al.  A Large Gene Cluster for the Clostridium cellulovorans Cellulosome , 2000, Journal of bacteriology.

[8]  M. Fields,et al.  Fibrobacter succinogenes S85 ferments ball-milled cellulose as fast as cellobiose until cellulose surface area is limiting , 2000, Applied Microbiology and Biotechnology.

[9]  R. Haser,et al.  Crystal Structures of the Cellulase Cel48F in Complex with Inhibitors and Substrates Give Insights Into its Processive Action , 2000 .

[10]  Shenmin Zhang,et al.  Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermobifida fusca. , 2000, European journal of biochemistry.

[11]  W. M. Westler,et al.  Secondary structure and calcium-induced folding of the Clostridium thermocellum dockerin domain determined by NMR spectroscopy. , 2000, Archives of Biochemistry and Biophysics.

[12]  E. Bayer,et al.  Cohesin‐dockerin recognition in cellulosome assembly: Experiment versus hypothesis , 2000, Proteins.

[13]  Ponpium,et al.  Isolation and properties of a cellulosome-type multienzyme complex of the thermophilic Bacteroides sp. strain P-1. , 2000, Enzyme and microbial technology.

[14]  B. Evans,et al.  The mechanism of cellulase action on cotton fibers: evidence from atomic force microscopy. , 2000, Ultramicroscopy.

[15]  H. Ohara,et al.  Characterization of the Cellulolytic Complex (Cellulosome) from Ruminococcus albus , 2000, Bioscience, biotechnology, and biochemistry.

[16]  R. Haser,et al.  Crystal structures of the cellulase Cel48F in complex with inhibitors and substrates give insights into its processive action. , 2000, Biochemistry.

[17]  H. Gilbert,et al.  A family 26 mannanase produced by Clostridium thermocellum as a component of the cellulosome contains a domain which is conserved in mannanases from anaerobic fungi. , 1999, Microbiology.

[18]  Raphael Lamed,et al.  A Novel Cellulosomal Scaffoldin fromAcetivibrio cellulolyticus That Contains a Family 9 Glycosyl Hydrolase , 1999, Journal of bacteriology.

[19]  J. Adler-Nissen,et al.  Enzymatic degradation of plant cell wall polysaccharides: the kinetic effect of competitive adsorption. , 1999, Die Nahrung.

[20]  I. Kataeva,et al.  Duplication and Recombination : Evidence for Gene Thermocellum Clostridium Cellulosome Component of Cellulase Gene Encoding Celk, a Major Cloning and Sequence Analysis of a New , 1999 .

[21]  Himmel,et al.  Cellulase for commodity products from cellulosic biomass , 1999, Current opinion in biotechnology.

[22]  E. Bayer,et al.  The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. , 1999, Trends in microbiology.

[23]  E. Gelhaye,et al.  The Extracellular Xylan Degradative System inClostridium cellulolyticum Cultivated on Xylan: Evidence for Cell-Free Cellulosome Production , 1999, Journal of bacteriology.

[24]  V. Zverlov,et al.  Duplicated Clostridium thermocellum cellobiohydrolase gene encoding cellulosomal subunits S3 and S5 , 1999, Applied Microbiology and Biotechnology.

[25]  R. Doi,et al.  Three Surface Layer Homology Domains at the N Terminus of the Clostridium cellulovorans Major Cellulosomal Subunit EngE , 1999, Journal of bacteriology.

[26]  H. Fierobe,et al.  Sequence Analysis of Scaffolding Protein CipC and ORFXp, a New Cohesin-Containing Protein inClostridium cellulolyticum: Comparison of Various Cohesin Domains and Subcellular Localization of ORFXp , 1999, Journal of bacteriology.

[27]  K. Sakka,et al.  Nucleotide sequences of two contiguous and highly homologous xylanase genes xynA and xynB and characterization of XynA from Clostridium thermocellum , 1999, Applied Microbiology and Biotechnology.

[28]  M. Himmel,et al.  Enzymes, Energy, and the Environment: A Strategic Perspective on the U.S. Department of Energy's Research and Development Activities for Bioethanol , 1999, Biotechnology progress.

[29]  Jérôme Gouzy,et al.  Recent improvements of the ProDom database of protein domain families , 1999, Nucleic Acids Res..

[30]  R. Haser,et al.  The crystal structure of the processive endocellulase CelF of Clostridium cellulolyticum in complex with a thiooligosaccharide inhibitor at 2.0 Å resolution , 1998, The EMBO journal.

[31]  C. Haynes,et al.  Characterization and affinity applications of cellulose-binding domains. , 1998, Journal of chromatography. B, Biomedical sciences and applications.

[32]  Tetsuya Kimura,et al.  Cloning and DNA Sequencing of the Genes EncodingClostridium josui Scaffolding Protein CipA and Cellulase CelD and Identification of Their Gene Products as Major Components of the Cellulosome , 1998, Journal of bacteriology.

[33]  Kim,et al.  Factorial optimization of a six-cellulase mixture , 1998, Biotechnology and bioengineering.

[34]  K. Riedel,et al.  Intramolecular synergism in an engineered exo‐endo‐1,4‐β‐glucanase fusion protein , 1998, Molecular microbiology.

[35]  P. Simpson,et al.  Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. , 1998, The Biochemical journal.

[36]  R. Doi,et al.  Cellulosome and noncellulosomal cellulases of Clostridium cellulovorans , 1998, Extremophiles.

[37]  G. Pettersson,et al.  The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface-erosion model. , 1998, European journal of biochemistry.

[38]  Shenmin Zhang,et al.  Roles of the Catalytic Domain and Two Cellulose Binding Domains of Thermomonospora fusca E4 in Cellulose Hydrolysis , 1998, Journal of bacteriology.

[39]  B. Henrissat,et al.  A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants , 1998, FEBS letters.

[40]  V. Zverlov,et al.  Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile 'Anaerocellum thermophilum' with separate glycosyl hydrolase family 9 and 48 catalytic domains. , 1998, Microbiology.

[41]  E. Bayer,et al.  Species‐specificity of the cohesin‐dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: Prediction of specificity determinants of the dockerin domain , 1997, Proteins.

[42]  P. Karplus,et al.  Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca , 1997, Nature Structural Biology.

[43]  C. Haynes,et al.  Surface Diffusion of Cellulases and Their Isolated Binding Domains on Cellulose* , 1997, The Journal of Biological Chemistry.

[44]  R. Brown,et al.  A comparative structural characterization of two cellobiohydrolases from Trichoderma reesei: a high resolution electron microscopy study , 1997 .

[45]  C. Tardif,et al.  The cellulolytic system of Clostridium cellulolyticum. , 1997, Journal of biotechnology.

[46]  I. Kataeva,et al.  Interaction between Clostridium thermocellum endoglucanase CelD and polypeptides derived from the cellulosome-integrating protein CipA: stoichiometry and cellulolytic activity of the complexes. , 1997, The Biochemical journal.

[47]  F. Lottspeich,et al.  Purification and properties of a cellobiose phosphorylase (CepA) and a cellodextrin phosphorylase (CepB) from the cellulolytic thermophile Clostridium stercorarium. , 1997, European journal of biochemistry.

[48]  Tuula T. Teeri,et al.  Crystalline cellulose degradation : new insight into the function of cellobiohydrolases , 1997 .

[49]  C. Tardif,et al.  Role of scaffolding protein CipC of Clostridium cellulolyticum in cellulose degradation , 1997, Journal of bacteriology.

[50]  J Kirby,et al.  Dockerin-like sequences in cellulases and xylanases from the rumen cellulolytic bacterium Ruminococcus flavefaciens. , 1997, FEMS microbiology letters.

[51]  P. Gounon,et al.  Characterization and Subcellular Localization of the Clostridium thermocellum Scaffoldin Dockerin Binding Protein SdbA , 1996 .

[52]  C. Tardif,et al.  Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum , 1997, Applied and environmental microbiology.

[53]  K. Sakka,et al.  Cellulosomes, cellulase complexes, of anaerobic microbes: their structure models and functions. , 1997 .

[54]  T. Steitz,et al.  Crystal structure of a bacterial family‐III cellulose‐binding domain: a general mechanism for attachment to cellulose. , 1996, The EMBO journal.

[55]  A Bairoch,et al.  Updating the sequence-based classification of glycosyl hydrolases. , 1996, The Biochemical journal.

[56]  P. Béguin,et al.  The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation. , 1996, Critical reviews in biochemistry and molecular biology.

[57]  L. Ljungdahl,et al.  Structural role of calcium for the organization of the cellulosome of Clostridium thermocellum. , 1996, Biochemistry.

[58]  K. Dawson,et al.  Carbohydrate Transport by the Anaerobic Thermophile Clostridium thermocellum LQRI , 1995, Applied and environmental microbiology.

[59]  S. Leschine,et al.  Ultrastructural diversity of the cellulase complexes of Clostridium papyrosolvens C7 , 1995, Journal of bacteriology.

[60]  W. Schwarz,et al.  Molecular characterization of four strains of the cellulolytic thermophile Clostridium stercorarium , 1995 .

[61]  J. Wu,et al.  Exoglucanase activities of the recombinant Clostridium thermocellum CelS, a major cellulosome component , 1995, Journal of bacteriology.

[62]  V. Varel,et al.  Addition of cellulolytic clostridia to the bovine rumen and pig intestinal tract , 1995, Applied and environmental microbiology.

[63]  D. Kilburn,et al.  Cellulose-binding domains : classification and properties , 1995 .

[64]  D. Stahl,et al.  Acetivibrio cellulolyticus and Bacteroides cellulosolvens are members of the greater clostridial assemblage. , 1994, FEMS microbiology letters.

[65]  E. Stackebrandt,et al.  Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. , 1994, FEMS microbiology letters.

[66]  P. Gounon,et al.  Subcellular localization of Clostridium thermocellum ORF3p, a protein carrying a receptor for the docking sequence borne by the catalytic components of the cellulosome , 1994, Journal of bacteriology.

[67]  J. Aubert,et al.  Recognition specificity of the duplicated segments present in Clostridium thermocellum endoglucanase CelD and in the cellulosome-integrating protein CipA , 1994, Journal of bacteriology.

[68]  A. Brune,et al.  Role of Microorganisms in the Digestion of Lignocellulose by Termites , 1994 .

[69]  R. Doi,et al.  The hydrophobic repeated domain of the Clostridium cellulovorans cellulose-binding protein (CbpA) has specific interactions with endoglucanases , 1993, Journal of Bacteriology.

[70]  M. Bhat,et al.  Cellobiose: A true inducer of cellulosome in different strains of Clostridium thermocellum , 1993 .

[71]  A. Demain,et al.  Carbohydrate utilization by clostridium thermocellum : importance of internal pH in regulating growth , 1992 .

[72]  P. Dhurjati,et al.  Interaction of the duplicated segment carried by Clostridium thermocellum cellulases with cellulosome components , 1991, FEBS letters.

[73]  Ding Youfang,et al.  Two cellulolytic Clostridium species: Clostridium cellulosi sp. nov. and Clostridium cellulofermentans sp. nov. , 1991 .

[74]  F. Siñeriz,et al.  Clostridium thermopapyrolyticum sp. nov., a cellulolytic thermophile. , 1991 .

[75]  J. Ståhlberg,et al.  A New Model For Enzymatic Hydrolysis of Cellulose Based on the Two-Domain Structure of Cellobiohydrolase I , 1991, Bio/Technology.

[76]  E. Bayer,et al.  Efficient cellulose solubilization by a combined cellulosome-β-glucosidase system , 1991 .

[77]  S. Leschine,et al.  Cellulase system of a free-living, mesophilic clostridium (strain C7) , 1990, Journal of bacteriology.

[78]  D. S. Williams,et al.  Clostridium aldrichii sp. nov., a cellulolytic mesophile inhabiting a wood-fermenting anaerobic digester. , 1990, International journal of systematic bacteriology.

[79]  Y. Mori Isolation of Mutants of Clostridium thermocellum with Enhanced Cellulase Production(Microbiology & Fermentation Industry) , 1990 .

[80]  O. Shoseyov,et al.  Essential 170-kDa subunit for degradation of crystalline cellulose by Clostridium cellulovorans cellulase. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[81]  S. Shimizu,et al.  Purification and properties of an endo-1,4-beta-glucanase from Clostridium josui , 1989, Journal of Bacteriology.

[82]  J. Millet,et al.  Enhanced Cellulose Fermentation by an Asporogenous and Ethanol-Tolerant Mutant of Clostridium thermocellum , 1989, Applied and environmental microbiology.

[83]  J. Millet,et al.  Cellulose Fermentation by an Asporogenous Mutant and an Ethanol-Tolerant Mutant of Clostridium thermocellum , 1989, Applied and Environmental Microbiology.

[84]  F. Piñaga,et al.  Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium celerecrescens sp. nov. , 1989 .

[85]  K. Toda,et al.  Purification and Characterization of Cellulases from Clostridium thermocopriae sp. nov. JT3-3 , 1989 .

[86]  E. Bayer,et al.  Cellulosomes from Clostridium thermocellum , 1988 .

[87]  Michael P. Coughlan,et al.  Macromolecular Organization of the Cellulolytic Enzyme Complex of Clostridium thermocellum as Revealed by Electron Microscopy , 1987, Applied and environmental microbiology.

[88]  E. Bayer,et al.  Specialized cell surface structures in cellulolytic bacteria , 1987, Journal of bacteriology.

[89]  J. Colvin,et al.  Emendation of the Genus Acetivibrio and Description of Acetivibrio cellulosolvens sp. nov., a Nonmotile Cellulolytic Mesophile† , 1984 .

[90]  R. Mah,et al.  Isolation and Characterization of an Anaerobic, Cellulolytic Bacterium, Clostridium cellulovorans sp. nov , 1984, Applied and environmental microbiology.

[91]  E. Bayer,et al.  Adherence of Clostridium thermocellum to cellulose , 1983, Journal of bacteriology.

[92]  Arnold L. Demain,et al.  Saccharification of Complex Cellulosic Substrates by the Cellulase System from Clostridium thermocellum , 1982, Applied and environmental microbiology.