Full Solution‐Processed Synthesis of All Metal Oxide‐Based Tree‐like Heterostructures on Fluorine‐Doped Tin Oxide for Water Splitting

Well-ordered tree-like functional heterostructures, composed of the environmentally friendly oxides ZnO, TiO(2) , and CuO, on a fluorine-doped tin oxide substrate are realized by a practical, cost-effective, solution-processable strategy. The heterostructures are demonstrated to be an efficient light-harvesting medium in a photo-electrochemical cell to split water for hydrogen-gas generation, and the developed strategy provides a highly promising, cheap, green way to fabricate multifunctional hierarchically branched structures for many potential applications.

[1]  Shixin Wu,et al.  Enhancement of photogenerated electron transport in dye-sensitized solar cells with introduction of a reduced graphene oxide-TiO2 junction. , 2011, Chemistry.

[2]  V. Stavila,et al.  New Mixed Ligand Single-Source Precursors for PbS Nanoparticles and Their Solvothermal Decomposition to Anisotropic Nano- And Microstructures , 2011 .

[3]  Guozhong Cao,et al.  Nanostructured photoelectrodes for dye-sensitized solar cells , 2011 .

[4]  Yali Wang,et al.  A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells. , 2011, Chemical communications.

[5]  Jiaguo Yu,et al.  Anatase TiO(2) nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells. , 2010, Nanoscale.

[6]  Ling Zhang,et al.  General strategy for a large-scale fabric with branched nanofiber-nanorod hierarchical heterostructure: controllable synthesis and applications. , 2010, Chemistry.

[7]  N. Chouhan,et al.  Array of CdSe QD-Sensitized ZnO Nanorods Serves as Photoanode for Water Splitting , 2010 .

[8]  P. Yang,et al.  Synthesis of metal sulfide nanomaterials via thermal decomposition of single-source precursors , 2010 .

[9]  G. Cao,et al.  Effect of an Ultrathin TiO2 Layer Coated on Submicrometer‐Sized ZnO Nanocrystallite Aggregates by Atomic Layer Deposition on the Performance of Dye‐Sensitized Solar Cells , 2010, Advanced materials.

[10]  C. M. Li,et al.  Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. , 2010, Journal of the American Chemical Society.

[11]  T. He,et al.  Anatase TiO(2) single crystals with exposed {001} and {110} facets: facile synthesis and enhanced photocatalysis. , 2010, Chemical communications.

[12]  Qiyuan He,et al.  Generation of dual patterns of metal oxide nanomaterials based on seed-mediated selective growth. , 2010, Langmuir.

[13]  Hua Zhang,et al.  Polyphenylene Dendrimer‐Templated In Situ Construction of Inorganic–Organic Hybrid Rice‐Shaped Architectures , 2010 .

[14]  Hao Gong,et al.  Hierarchical assembly of ZnO nanostructures on SnO(2) backbone nanowires: low-temperature hydrothermal preparation and optical properties. , 2009, ACS nano.

[15]  Jimmy C. Yu,et al.  A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets. , 2009, Chemical communications.

[16]  Zhong Lin Wang ZnO Nanowire and Nanobelt Platform for Nanotechnology , 2009 .

[17]  Craig A. Grimes,et al.  Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry , 2009 .

[18]  Sean C. Smith,et al.  Solvothermal synthesis and photoreactivity of anatase TiO(2) nanosheets with dominant {001} facets. , 2009, Journal of the American Chemical Society.

[19]  N. Zheng,et al.  Nonaqueous production of nanostructured anatase with high-energy facets. , 2008, Journal of the American Chemical Society.

[20]  Lei Jiang,et al.  Fabrication of three-dimensional ZnO/TiO2 heteroarchitectures via a solution process , 2008 .

[21]  Jin Zou,et al.  Anatase TiO2 single crystals with a large percentage of reactive facets , 2008, Nature.

[22]  Song Jin,et al.  Dislocation-Driven Nanowire Growth and Eshelby Twist , 2008, Science.

[23]  Jun Liu,et al.  Secondary nucleation and growth of ZnO. , 2007, Journal of the American Chemical Society.

[24]  A. Dong,et al.  Solution-based growth and structural characterization of homo- and heterobranched semiconductor nanowires. , 2007, Journal of the American Chemical Society.

[25]  Yongfang Li,et al.  Synthesis and Cathodoluminescence of Morphology-Tunable SiO2 Nanotubes and ZnS/SiO2 Core−Shell Structures Using CdSe Nanocrystals as the Seeds , 2007 .

[26]  A. Dong,et al.  Solution-liquid-solid (SLS) growth of ZnSe-ZnTe quantum wires having axial heterojunctions. , 2007, Nano letters.

[27]  Shih-Hsuan Yang,et al.  Emergent methods to synthesize and characterize semiconductor CuO nanoparticles with various morphologies – an overview , 2007 .

[28]  Haizheng Zhong,et al.  Design and Fabrication of Rocketlike Tetrapodal CdS Nanorods by Seed-Epitaxial Metal−Organic Chemical Vapor Deposition , 2007 .

[29]  Zhong Lin Wang,et al.  Single-crystalline branched zinc phosphide nanostructures: synthesis, properties, and optoelectronic devices. , 2007, Nano letters.

[30]  Hongkun Park,et al.  Catalyst-assisted solution-liquid-solid synthesis of CdS/CdSe nanorod heterostructures. , 2007, Journal of the American Chemical Society.

[31]  Tierui Zhang,et al.  Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites. , 2006, Journal of the American Chemical Society.

[32]  Bing Tan,et al.  Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. , 2006, The journal of physical chemistry. B.

[33]  J. Vittal,et al.  A simple way to prepare PbS nanocrystals with morphology tuning at room temperature. , 2006, The journal of physical chemistry. B.

[34]  K. Koumoto,et al.  Electrochemical deposition of ZnO film and its photoluminescence properties , 2006 .

[35]  Ling-Dong Sun,et al.  Hierarchical assembly of SnO2 nanorod arrays on alpha-Fe2O3 nanotubes: a case of interfacial lattice compatibility. , 2005, Journal of the American Chemical Society.

[36]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[37]  Hiroshi Matsui,et al.  FTO/ITO double-layered transparent conductive oxide for dye-sensitized solar cells , 2004 .

[38]  Lars Samuelson,et al.  Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events , 2004, Nature materials.

[39]  Fang Qian,et al.  Rational growth of branched and hyperbranched nanowire structures , 2004 .

[40]  Liberato Manna,et al.  Controlled growth of tetrapod-branched inorganic nanocrystals , 2003, Nature materials.

[41]  Marius Grundmann,et al.  High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition , 2003 .

[42]  Peidong Yang,et al.  Dendritic nanowire ultraviolet laser array. , 2003, Journal of the American Chemical Society.

[43]  Charles C. Sorrell,et al.  Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects , 2002 .

[44]  Zhifeng Ren,et al.  Hierarchical ZnO Nanostructures , 2002 .

[45]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[46]  Shih-Hsuan Yang,et al.  One-dimensional growth of rock-salt PbS nanocrystals mediated by surfactant/polymer templates , 2000 .

[47]  Th. Dittrich,et al.  Electron Drift Mobility in Porous TiO2 (Anatase) , 1998 .

[48]  Chandan Kumar Sarkar,et al.  Copper oxide thin films grown by plasma evaporation method , 1992 .