Entropy and Global Existence for Hyperbolic Balance Laws

Abstract.This paper presents a general result on the existence of global smooth solutions to hyperbolic systems of balance laws in several space variables. We propose an entropy dissipation condition and prove the existence of global smooth solutions under initial data close to a constant equilibrium state. In addition, we show that a system of balance laws satisfies a Kawashima condition if and only if its first-order approximation, namely the hyperbolic-parabolic system derived through the Chapman-Enskog expansion, satisfies the corresponding Kawashima condition. The result is then applied to Bouchut’s discrete velocity BGK models approximating hyperbolic systems of conservation laws.

[1]  Wen-An Yong,et al.  Singular Perturbations of First-Order Hyperbolic Systems , 1993 .

[2]  P. Huynh,et al.  Approximation par relaxation d'un système de Maxwell non linéaire , 2000 .

[3]  S. Kawashima,et al.  On the decay of solutions to the linearized equations of electro-magneto-fluid dynamics , 1984 .

[4]  Shuichi Kawashima,et al.  Large-time behaviour of solutions to hyperbolic–parabolic systems of conservation laws and applications , 1987, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[5]  K. Zumbrun Multidimensional Stability of Planar Viscous Shock Waves , 2001 .

[6]  Shuichi Kawashima,et al.  Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation , 1985 .

[7]  F. Bouchut Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws , 1999 .

[8]  Wen-An Yong,et al.  Singular Perturbations of First-Order Hyperbolic Systems with Stiff Source Terms , 1999 .

[9]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[10]  S. Kawashima Asymptotic stability of Maxwellians of the discrete Boltzmann equation , 1987 .

[11]  D. Serre Relaxations semi-linaire et cintique des systmes de lois de conservation , 2000 .

[12]  I. Müller,et al.  Rational Extended Thermodynamics , 1993 .

[13]  C. D. Levermore,et al.  Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .

[14]  Denis Serre,et al.  Stability of constant equilibrium state for dissipative balance laws system with a convex entropy , 2004 .

[15]  Kevin Zumbrun,et al.  Pointwise Green's function bounds and stability of relaxation shocks , 2001 .

[16]  A. Majda Compressible fluid flow and systems of conservation laws in several space variables , 1984 .

[17]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[18]  Wen-An Yong,et al.  Basic Aspects of Hyperbolic Relaxation Systems , 2001 .

[19]  Roberto Natalini,et al.  Discrete Kinetic Schemes for Multidimensional Systems of Conservation Laws , 2000, SIAM J. Numer. Anal..

[20]  C. D. Levermore,et al.  Moment closure hierarchies for kinetic theories , 1996 .

[21]  Roberto Natalini,et al.  GLOBAL EXISTENCE OF SMOOTH SOLUTIONS FOR PARTIALLYDISSIPATIVE HYPERBOLIC SYSTEMS WITH A CONVEX ENTROPYB , 2002 .

[22]  Yanni Zeng,et al.  Gas Dynamics in Thermal Nonequilibrium¶and General Hyperbolic Systems¶with Relaxation , 1999 .

[23]  Tommaso Ruggeri,et al.  Hyperbolic Principal Subsystems: Entropy Convexity and Subcharacteristic Conditions , 1997 .

[24]  Shuichi Kawashima,et al.  Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics , 1984 .

[25]  Kevin Zumbrun,et al.  Existence of Relaxation Shock Profiles for Hyperbolic Conservation Laws , 2000, SIAM J. Appl. Math..