Kilohertz gain-switched laser operation and femtosecond regenerative amplification in Cr:forsterite

We present a comprehensive study of the optimum operating regime in a gain-switched Cr:forsterite laser at a repetition frequency of 1 kHz with special attention to temperature-dependent and parasitic absorption effects and proper resonator design. On the basis of the results achieved, me demonstrate highly efficient (13% extraction efficiency) operation of a femtosecond regenerative amplifier based on Cr:forsterite and operating near room temperature with a novel BBO Pockels cell that is highly resistant to optical damage. Chirped pulse amplification raises the pulse energy to 355 /spl mu/J in /spl ap/30 cavity round trips which corresponds to an amplification factor of /spl ap/5.5/spl times/10/sup 5/. The nearly transform limited 200-/spl mu/J 135-fs compressed pulses near 1.25 /spl mu/m have a peak power of /spl ap/1.5 GW. Frequency doubling with 52% conversion efficiency in LBO produces femtosecond pulses of 104-/spl mu/J energy in the visible near 625 nm.

[1]  T. Sugaya,et al.  Self-starting mode-locked femtosecond forsterite laser with a semiconductor saturable-absorber mirror. , 1997, Optics letters.

[2]  K. W. Kangas,et al.  Characteristics and kinetics of laser-pumped Ti:sapphire oscillators , 1988 .

[3]  M. Knowles,et al.  Cavity configurations for copper vapour laser pumped titanium sapphire lasers , 1992 .

[4]  Clifford R. Pollock,et al.  Cr/sup 4+/ lasers: present performance and prospects for new host lattices , 1995 .

[5]  A. Piskarskas,et al.  Visible pulses of 100 fs and 100 μJ from an upconverted parametric generator. , 1996, Applied optics.

[6]  G. Mourou,et al.  100-fs pulse generation and amplification in Ti:Al 2 O 3 , 1991 .

[7]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[8]  Timothy J. Carrig,et al.  Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers , 1993 .

[9]  K. Kato Temperature-tuned 90o phase-matching properties of LiB3O5 , 1994 .

[10]  Kenji Torizuka,et al.  Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber , 1997 .

[11]  V. G. Shcherbitsky,et al.  Excited-state absorption in the range of pumping and laser efficiency of Cr4+:forsterite. , 1998, Optics letters.

[12]  B. Lemoff,et al.  Quintic-phase-limited, spatially uniform expansion and recompression of ultrashort optical pulses. , 1993, Optics letters.

[13]  B. Stuart,et al.  Self-phase modulation in chirped-pulse amplification. , 1994, Optics letters.

[14]  R. Alfano,et al.  Dynamics of local modes during nonradiative relaxation , 1997 .

[15]  R R Alfano,et al.  Direct diode-pumped continuous-wave near-inf rared tunable laser operation of Cr(4+):forsterite and Cr(4+):Ca(2)GeO(4). , 1997, Optics letters.

[16]  N. Zhavoronkov,et al.  Efficient chromium-doped forsterite laser with gain switching , 1997 .

[17]  V. Petrov,et al.  Powerful and tunable operation of a 1-2-kHz repetition-rate gain-switched Cr:forsterite laser and its frequency doubling. , 1999, Applied optics.

[18]  L. Merkle,et al.  Evidence of Excited-State Absorption of Pump Radiation in the Cr:Forsterite Laser , 1991 .

[19]  Gerard Mourou,et al.  Generation of ultrahigh peak power pulses by chirped pulse amplification , 1988 .

[20]  A. Ivanov,et al.  Experimental determination of the nonlinear refractive index in an operating Cr:forsterite femtosecond laser , 1997 .

[21]  T Ditmire,et al.  Cr:LiSrAlF(6) regenerative amplifier. , 1992, Optics letters.

[22]  Highly efficient parametric conversion of femtosecond Ti:sapphire laser pulses at 1 kHz. , 1994, Optics letters.

[23]  L. Thomas,et al.  Laser Perfomance of Chromium-Aluminum-Doped Forsterite , 1989 .

[24]  S. Dell'acqua,et al.  All-solid-state gain-switched Cr4+:forsterite laser , 1996 .

[25]  B. Minkov,et al.  Tunable chromium forsterite laser in the near IR region , 1990 .

[26]  V. G. Shcherbitsky,et al.  Excited-state absorption and stimulated emission measurements in Cr4+:forsterite , 1997 .

[27]  Gregory D. Goodno,et al.  Investigation of β‐BaB2O4 as a Q switch for high power applications , 1995 .

[28]  F. Seifert,et al.  Solid-state laser system for the generation of midinfrared femtosecond pulses tunable from 3.3 to 10 microm. , 1994, Optics letters.

[29]  R. Alfano,et al.  Kilohertz Cr:forsterite regenerative amplifier , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[30]  J. R. Taylor,et al.  All-solid-state Kerr lens mode-locked Cr4+:forsterite laser , 1996 .

[31]  G. Jonusauskas,et al.  54-fs, 1-GW, 1-kHz pulse amplification in Cr:forsterite. , 1998, Optics letters.

[32]  Koji Kato Temperature-tuned 90゜phase-matching properties of LiB_3O_5 , 1994 .

[33]  F. Wise,et al.  Femtosecond Cr:forsterite laser diode pumped by a double-clad fiber. , 1998, Optics letters.

[34]  Michael D. Perry,et al.  Chirped-pulse amplification in Ti:sapphire beyond 1 /spl mu/m , 1995 .

[35]  S. Gayen,et al.  Near infrared tunable operation of chromium doped forsterite laser. , 1989, Applied optics.

[36]  W. H. Lowdermilk,et al.  The multipass amplifier: Theory and numerical analysis , 1980 .

[37]  K. Kato,et al.  Temperature-tuned 90/spl deg/ phase-matching properties of LiB/sub 3/O/sub 5/ , 1994 .

[38]  Gerard Mourou,et al.  Chirped pulse amplification of 300 fs pulses in an alexandrite regenerative amplifier , 1989 .