Generating Pairing-Friendly Curves with the CM Equation of Degree 1
暂无分享,去创建一个
[1] Hyang-Sook Lee,et al. Efficient and Generalized Pairing Computation on Abelian Varieties , 2009, IEEE Transactions on Information Theory.
[2] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[3] Matthew K. Franklin,et al. Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.
[4] Tanja Lange,et al. Handbook of Elliptic and Hyperelliptic Curve Cryptography , 2005 .
[5] R. Balasubramanian,et al. The Improbability That an Elliptic Curve Has Subexponential Discrete Log Problem under the Menezes—Okamoto—Vanstone Algorithm , 1998, Journal of Cryptology.
[6] Annegret Weng,et al. Elliptic Curves Suitable for Pairing Based Cryptography , 2005, Des. Codes Cryptogr..
[7] Antoine Joux. A One Round Protocol for Tripartite Diffie-Hellman , 2000, ANTS.
[8] Michael Scott,et al. Constructing Brezing-Weng Pairing-Friendly Elliptic Curves Using Elements in the Cyclotomic Field , 2008, Pairing.
[9] Ken Nakamula,et al. Constructing Pairing-Friendly Elliptic Curves Using Factorization of Cyclotomic Polynomials , 2008, Pairing.
[10] Michael Scott,et al. A Taxonomy of Pairing-Friendly Elliptic Curves , 2010, Journal of Cryptology.
[11] Andrew V. Sutherland. Computing Hilbert class polynomials with the Chinese remainder theorem , 2009, Math. Comput..
[12] Paulo S. L. M. Barreto,et al. Pairing-Friendly Elliptic Curves of Prime Order , 2005, Selected Areas in Cryptography.
[13] 晋輝 趙,et al. H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen and F. Vercauteren (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptography, Discrete Math. Appl. (Boca Raton)., Chapman & Hall/CRC, 2006年,xxxiv + 808ページ. , 2009 .
[14] Steven D. Galbraith,et al. Ordinary abelian varieties having small embedding degree , 2007, Finite Fields Their Appl..
[15] Hovav Shacham,et al. Short Signatures from the Weil Pairing , 2001, J. Cryptol..
[16] David Mandell Freeman,et al. Constructing Pairing-Friendly Elliptic Curves with Embedding Degree 10 , 2006, ANTS.