Generating Pairing-Friendly Curves with the CM Equation of Degree 1

Refinements of the Brezing-Weng method have provided families of pairing-friendly curves with improved ρ -values by using non-cyclotomic polynomials that define cyclotomic fields. We revisit these methods via a change-of-basis matrix and completely classify a basis for a cyclotomic field to produce a family of pairing-friendly curves with a CM equation of degree 1. Using this classification, we propose a new algorithm to construct Brezing-Weng-like elliptic curves having the CM equation of degree 1, and we present new families of curves with larger discriminants.

[1]  Hyang-Sook Lee,et al.  Efficient and Generalized Pairing Computation on Abelian Varieties , 2009, IEEE Transactions on Information Theory.

[2]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[3]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[4]  Tanja Lange,et al.  Handbook of Elliptic and Hyperelliptic Curve Cryptography , 2005 .

[5]  R. Balasubramanian,et al.  The Improbability That an Elliptic Curve Has Subexponential Discrete Log Problem under the Menezes—Okamoto—Vanstone Algorithm , 1998, Journal of Cryptology.

[6]  Annegret Weng,et al.  Elliptic Curves Suitable for Pairing Based Cryptography , 2005, Des. Codes Cryptogr..

[7]  Antoine Joux A One Round Protocol for Tripartite Diffie-Hellman , 2000, ANTS.

[8]  Michael Scott,et al.  Constructing Brezing-Weng Pairing-Friendly Elliptic Curves Using Elements in the Cyclotomic Field , 2008, Pairing.

[9]  Ken Nakamula,et al.  Constructing Pairing-Friendly Elliptic Curves Using Factorization of Cyclotomic Polynomials , 2008, Pairing.

[10]  Michael Scott,et al.  A Taxonomy of Pairing-Friendly Elliptic Curves , 2010, Journal of Cryptology.

[11]  Andrew V. Sutherland Computing Hilbert class polynomials with the Chinese remainder theorem , 2009, Math. Comput..

[12]  Paulo S. L. M. Barreto,et al.  Pairing-Friendly Elliptic Curves of Prime Order , 2005, Selected Areas in Cryptography.

[13]  晋輝 趙,et al.  H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen and F. Vercauteren (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptography, Discrete Math. Appl. (Boca Raton)., Chapman & Hall/CRC, 2006年,xxxiv + 808ページ. , 2009 .

[14]  Steven D. Galbraith,et al.  Ordinary abelian varieties having small embedding degree , 2007, Finite Fields Their Appl..

[15]  Hovav Shacham,et al.  Short Signatures from the Weil Pairing , 2001, J. Cryptol..

[16]  David Mandell Freeman,et al.  Constructing Pairing-Friendly Elliptic Curves with Embedding Degree 10 , 2006, ANTS.