Reorientation of linear switched systems using state feedback

A characterisation is obtained for the controlled and conditioned invariants of a linear switched system under feedback. The existence of a maximal consistent subspace with feedback is shown and is computed. A few sufficient conditions under which the feedback has no effect on the controlled and conditioned invariants are obtained. Sufficient conditions for achieving the minimal jump subspace with feedback when it exists, were also derived. The impossibility of forcing the jump subspace to a trivial subspace with state feedback is shown. Some sufficient conditions on the feedback for the consistent and jump subspaces to intersect trivially have also been stated.

[1]  S. Bhattacharyya Observer design for linear systems with unknown inputs , 1978 .

[2]  B. Molinari A strong controllability and observability in linear multivariable control , 1976 .

[3]  L. Silverman,et al.  System structure and singular control , 1983 .

[4]  A. Schaft,et al.  Switched networks and complementarity , 2003 .

[5]  M. Hautus The Formal Laplace Transform for Smooth Linear Systems , 1976 .

[6]  Jong-Shi Pang,et al.  Linear Complementarity Systems: Zeno States , 2005, SIAM J. Control. Optim..

[7]  Domine M. W. Leenaerts,et al.  Piecewise Linear Modeling and Analysis , 1998 .

[8]  M. Kanat Camlibel,et al.  Conewise Linear Systems: Non-Zenoness and Observability , 2006, SIAM J. Control. Optim..

[9]  A. Dervişoğlu,et al.  State equations and initial values in active RLC networks , 1971, IEEE Transactions on Circuit Theory.

[10]  Franco Blanchini,et al.  Set-theoretic methods in control , 2007 .

[11]  Sundaram Seshu,et al.  Linear network analysis , 1959 .

[12]  Arjan van der Schaft,et al.  Equivalence of hybrid dynamical systems , 2004 .

[13]  Arjan van der Schaft,et al.  The complementary-slackness class of hybrid systems , 1996, Math. Control. Signals Syst..

[14]  W. Heemels,et al.  Well-posedness of linear complementarity systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[15]  G. Basile,et al.  Controlled and conditioned invariants in linear system theory , 1992 .

[16]  Harry L. Trentelman,et al.  Control theory for linear systems , 2002 .

[17]  W. M. Wonham,et al.  Decoupling and disturbance rejection , 1975 .

[18]  Johannes Schumacher,et al.  Complete description of dynamics in the linear complementary-slackness class of hybrid systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[19]  B. Molinari,et al.  Extended controllability and observability for linear systems , 1976 .

[20]  Arjan van der Schaft,et al.  Modelling, Well-Posedness, Stability of Switched Electrical Networks , 2003, HSCC.

[21]  Arjan van der Schaft,et al.  Bisimulation of Dynamical Systems , 2004, HSCC.

[22]  B. Molinari,et al.  Zeros of the system matrix , 1976 .

[23]  G. Basile,et al.  On the observability of linear, time-invariant systems with unknown inputs , 1969 .

[24]  Zhang Zuhao,et al.  ZZ model method for initial condition analysis of dynamics networks , 1991 .

[25]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[26]  A. J. van der Schaft,et al.  Complementarity modeling of hybrid systems , 1998, IEEE Trans. Autom. Control..

[27]  Arjan van der Schaft,et al.  Equivalence of dynamical systems by bisimulation , 2004, IEEE Trans. Autom. Control..

[28]  W. P. M. H. Heemels,et al.  Linear Complementarity Systems , 2000, SIAM J. Appl. Math..

[29]  George J. Pappas Bisimilar linear systems , 2003, Autom..

[30]  Self-bounded controlled invariants versus stabilizability , 1986 .

[31]  Giovanni Marro,et al.  Self-bounded controlled invariant subspaces: A straightforward approach to constrained controllability , 1982 .

[32]  On calculating maximal (A,B) invariant subspaces , 1975 .

[33]  Arjan van der Schaft,et al.  Uniqueness of solutions of linear relay systems , 1999, Autom..

[34]  João Pedro Hespanha,et al.  Linear Systems Theory , 2009 .

[35]  G. Basile,et al.  Controlled and conditioned invariant subspaces in linear system theory , 1969 .

[36]  M. Kanat Camlibel,et al.  Linear Passive Networks With Ideal Switches: Consistent Initial Conditions and State Discontinuities , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[37]  A. Opal,et al.  Consistent initial conditions of linear switched networks , 1990 .

[38]  A. Morse,et al.  Decoupling and Pole Assignment in Linear Multivariable Systems: A Geometric Approach , 1970 .

[39]  Johannes Schumacher,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[40]  G. Basile,et al.  A new characterization of some structural properties of linear systems: unknown-input observability, invertibility and functional controllability† , 1973 .

[41]  E. Gilbert,et al.  Theory and computation of disturbance invariant sets for discrete-time linear systems , 1998 .

[42]  Arjan van der Schaft,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .