Evolution Strategies
暂无分享,去创建一个
[1] Lawrence J. Fogel,et al. Artificial Intelligence through Simulated Evolution , 1966 .
[2] K. Steiglitz,et al. Adaptive step size random search , 1968 .
[3] Ingo Rechenberg,et al. Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .
[4] H. P. Schwefel,et al. Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .
[5] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[6] A. A. Zhigli︠a︡vskiĭ,et al. Theory of Global Random Search , 1991 .
[7] Andreas Ostermeier,et al. An Evolution Strategy with Momentum Adaptation of the Random Number Distribution , 1992, PPSN.
[8] Heinz Mühlenbein,et al. Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.
[9] Michael Herdy,et al. The number of offspring as strategy parameter in hierarchically organized evolution strategies , 1993, SIGB.
[10] Nikolaus Hansen,et al. A Derandomized Approach to Self-Adaptation of Evolution Strategies , 1994, Evolutionary Computation.
[11] Hans-Georg Beyer,et al. Toward a Theory of Evolution Strategies: On the Benefits of Sex the (/, ) Theory , 1995, Evolutionary Computation.
[12] Hans-Paul Schwefel,et al. Evolution and optimum seeking , 1995, Sixth-generation computer technology series.
[13] Hans-Georg Beyer,et al. Toward a Theory of Evolution Strategies: Self-Adaptation , 1995, Evolutionary Computation.
[14] Nikolaus Hansen,et al. On the Adaptation of Arbitrary Normal Mutation Distributions in Evolution Strategies: The Generating Set Adaptation , 1995, ICGA.
[15] Cornelia Kappler,et al. Are Evolutionary Algorithms Improved by Large Mutations? , 1996, PPSN.
[16] Nikolaus Hansen,et al. Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.
[17] Shun-ichi Amari,et al. Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.
[18] H.-G. Beyer,et al. Mutate large, but inherit small ! On the analysis of rescaled mutations in (1, λ)-ES with noisy fitness data , 1998 .
[19] G. Unter Rudolph. Local Convergence Rates of Simple Evolutionary Algorithms with Cauchy Mutations , 1998 .
[20] Ralf Salomon,et al. Evolutionary algorithms and gradient search: similarities and differences , 1998, IEEE Trans. Evol. Comput..
[21] Xin Yao,et al. Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..
[22] N. Hansen,et al. An Evolution Strategy with Coordinate System Invariant Adaptation of Arbitrary Normal Mutation Distr , 1999 .
[23] Hans-Georg Beyer,et al. Analysis of the (/, )-ES on the Parabolic Ridge , 2000, Evolutionary Computation.
[24] Nikolaus Hansen,et al. Invariance, Self-Adaptation and Correlated Mutations and Evolution Strategies , 2000, PPSN.
[25] Hans-Georg Beyer,et al. Local Performance of the (μ/μ, μ)-ES in a Noisy Environment , 2000, FOGA.
[26] Günter Rudolph,et al. Self-adaptive mutations may lead to premature convergence , 2001, IEEE Trans. Evol. Comput..
[27] Hans-Georg Beyer,et al. The Theory of Evolution Strategies , 2001, Natural Computing Series.
[28] Andreas Zell,et al. Main vector adaptation: a CMA variant with linear time and space complexity , 2001 .
[29] Nikolaus Hansen,et al. Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.
[30] Hans-Georg Beyer,et al. Local performance of the (1 + 1)-ES in a noisy environment , 2002, IEEE Trans. Evol. Comput..
[31] Thomas Philip Runarsson,et al. Reducing Random Fluctuations in Mutative Self-adaptation , 2002, PPSN.
[32] Juan Julián Merelo Guervós,et al. Parallel Problem Solving from Nature — PPSN VII , 2002, Lecture Notes in Computer Science.
[33] Dirk V. Arnold,et al. Noisy Optimization With Evolution Strategies , 2002, Genetic Algorithms and Evolutionary Computation.
[34] Hans-Georg Beyer,et al. On the Benefits of Populations for Noisy Optimization , 2003, Evolutionary Computation.
[35] Olivier François,et al. Global convergence for evolution strategies in spherical problems: some simple proofs and difficulties , 2003, Theor. Comput. Sci..
[36] Petros Koumoutsakos,et al. Learning probability distributions in continuous evolutionary algorithms – a comparative review , 2004, Natural Computing.
[37] Hans-Georg Beyer,et al. Performance analysis of evolutionary optimization with cumulative step length adaptation , 2004, IEEE Transactions on Automatic Control.
[38] Hans-Paul Schwefel,et al. Evolution strategies – A comprehensive introduction , 2002, Natural Computing.
[39] Petros Koumoutsakos,et al. Learning Probability Distributions in Continuous Evolutionary Algorithms - a Comparative Review , 2004, Nat. Comput..
[40] David E. Goldberg,et al. The parameter-less genetic algorithm in practice , 2004, Inf. Sci..
[41] Nikolaus Hansen,et al. Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.
[42] Nikolaus Hansen,et al. A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.
[43] A. Auger. Convergence results for the ( 1 , )-SA-ES using the theory of-irreducible Markov chains , 2005 .
[44] Dirk V. Arnold,et al. Improving Evolution Strategies through Active Covariance Matrix Adaptation , 2006, 2006 IEEE International Conference on Evolutionary Computation.
[45] Dirk V. Arnold,et al. Hierarchically organised evolution strategies on the parabolic ridge , 2006, GECCO '06.
[46] Hans-Georg Beyer,et al. Evolution strategies with cumulative step length adaptation on the noisy parabolic ridge , 2008, Natural Computing.
[47] Jens Jägersküpper,et al. How the (1+1) ES using isotropic mutations minimizes positive definite quadratic forms , 2006, Theor. Comput. Sci..
[48] Olivier Teytaud,et al. General Lower Bounds for Evolutionary Algorithms , 2006, PPSN.
[49] Hans-Georg Beyer,et al. Optimum Tracking with Evolution Strategies , 2006, Evolutionary Computation.
[50] Nikolaus Hansen,et al. An Analysis of Mutative -Self-Adaptation on Linear Fitness Functions , 2006, Evolutionary Computation.
[51] Hans-Georg Beyer,et al. A general noise model and its effects on evolution strategy performance , 2006, IEEE Transactions on Evolutionary Computation.
[52] Dirk V. Arnold,et al. Weighted multirecombination evolution strategies , 2006, Theor. Comput. Sci..
[53] Anne Auger,et al. Reconsidering the progress rate theory for evolution strategies in finite dimensions , 2006, GECCO '06.
[54] Anne Auger,et al. Log-Linear Convergence and Optimal Bounds for the (1+1)-ES , 2007, Artificial Evolution.
[55] Stefan Roth,et al. Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.
[56] Dirk V. Arnold,et al. On the use of evolution strategies for optimising certain positive definite quadratic forms , 2007, GECCO '07.
[57] Jens Jägersküpper,et al. Algorithmic analysis of a basic evolutionary algorithm for continuous optimization , 2007, Theor. Comput. Sci..
[58] Hans-Georg Beyer,et al. Mutative self-adaptation on the sharp and parabolic ridge , 2007, FOGA'07.
[59] James N. Knight,et al. Reducing the space-time complexity of the CMA-ES , 2007, GECCO '07.
[60] Jens Jägersküpper. Lower Bounds for Hit-and-Run Direct Search , 2007, SAGA.
[61] Bernhard Sendhoff,et al. Covariance Matrix Adaptation Revisited - The CMSA Evolution Strategy - , 2008, PPSN.
[62] Tom Schaul,et al. Natural Evolution Strategies , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).
[63] Dirk V. Arnold,et al. Step Length Adaptation on Ridge Functions , 2008, Evolutionary Computation.
[64] Jens Jägersküpper,et al. Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods General Lower Bounds for Randomized Direct Search with Isotropic Sampling , 2008 .
[65] Dirk V. Arnold,et al. On the Behaviour of the (1+1)-ES for a Simple Constrained Problem , 2008, PPSN.
[66] Christian Igel,et al. Efficient covariance matrix update for variable metric evolution strategies , 2009, Machine Learning.
[67] Tom Schaul,et al. Stochastic search using the natural gradient , 2009, ICML '09.
[68] Hans-Georg Beyer,et al. On strategy parameter control by Meta-ES , 2009, GECCO '09.
[69] Anne Auger,et al. Log-Linear Convergence and Divergence of the Scale-Invariant (1+1)-ES in Noisy Environments , 2011, Algorithmica.
[70] Isao Ono,et al. Bidirectional Relation between CMA Evolution Strategies and Natural Evolution Strategies , 2010, PPSN.
[71] Christian Igel,et al. Improved step size adaptation for the MO-CMA-ES , 2010, GECCO '10.
[72] Hans-Georg Beyer,et al. On the Behaviour of Evolution Strategies Optimising Cigar Functions , 2010, Evolutionary Computation.
[73] Olivier Teytaud,et al. Lower Bounds for Comparison Based Evolution Strategies Using VC-dimension and Sign Patterns , 2011, Algorithmica.
[74] Dirk V. Arnold,et al. Analysis of a repair mechanism for the (1,λ)-ES applied to a simple constrained problem , 2011, GECCO '11.
[75] Anne Auger,et al. Mirrored sampling in evolution strategies with weighted recombination , 2011, GECCO '11.
[76] Dirk V. Arnold,et al. On the behaviour of the (1,λ)-es for a simple constrained problem , 2011, FOGA '11.
[77] Anne Auger,et al. Analyzing the impact of mirrored sampling and sequential selection in elitist evolution strategies , 2011, FOGA '11.
[78] Stephen R. Marsland,et al. Convergence Properties of (μ + λ) Evolutionary Algorithms , 2011, AAAI.
[79] Anne Auger,et al. Theory of Evolution Strategies: A New Perspective , 2011, Theory of Randomized Search Heuristics.
[80] Carlos A. Coello Coello,et al. Constraint-handling in nature-inspired numerical optimization: Past, present and future , 2011, Swarm Evol. Comput..
[81] Fernando G. Lobo,et al. Introduction to Estimation of Distribution Algorithms , 2012 .
[82] Anne Auger,et al. Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles , 2011, J. Mach. Learn. Res..