Demonstration of the monolithic interconnection on CIS solar cells by picosecond laser structuring on 30 by 30 cm2 modules

In this paper, we present the selective structuring of all three patterns (P1, P2 and P3) of a monolithic interconnection of CIS (Cu(In,Ga)(S,Se)2) thin film solar cells by picosecond laser pulses at a wavelength of 1064 nm. We show results for single pulse ablation threshold values and line scribing of molybdenum films on glass (P1), CIS on molybdenum (P2) and zinc oxide on CIS (P3). The purposes of these processes are the p‐type isolation (P1), cell interconnect (P2) and n‐type isolation (P3), which are required for complete cell architecture. The half micron thick molybdenum back electrode can be structured with a process speed of more than 15 m/s at about 15 W average power without detectable residues and damage by direct induced laser ablation from the back side (P1). The CIS layer can be structured selectively down to the molybdenum at process speeds up to 1 m/s at about 15 W average power, due to the precision of direct laser ablation in the ultrashort pulse regime (P2). The ZnO front electrode layer is separated by clean trenches with straight side walls at process speeds of up to 15 m/s at about 10 W average power, as a result of indirect induced laser ablation (P3). A validation of functionality of all processes is demonstrated on CIS solar cell modules (30 × 30 cm2). By replacing one state‐of‐the‐art process by a picosecond laser process at a time, solar efficiencies could be increased for P1 and P2 and stayed on a similar level for P3. After an optimization of the patterning processes in the R&D pilot line of AVANCIS, we achieved a new record efficiency for an all‐laser‐patterned CIS solar module: 14.7% as best value for the aperture area efficiency of a 30 × 30 cm2 sized CIS module was reached. Copyright © 2014 John Wiley & Sons, Ltd.

[1]  Matthias Domke,et al.  Numerical simulation of ultrafast expansion as the driving mechanism for confined laser ablation with ultra-short laser pulses , 2013 .

[2]  Heinz P. Huber,et al.  Optimization of picosecond laser structuring for the monolithic serial interconnection of CIS solar cells , 2013 .

[3]  Matthias Domke,et al.  Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses , 2012 .

[4]  Matthias Domke,et al.  Ultra-fast movies of thin-film laser ablation , 2012 .

[5]  Matthias Domke,et al.  Ultrafast pump-probe microscopy with high temporal dynamic range. , 2012, Optics express.

[6]  Valerio Romano,et al.  Selective ablation of thin films in latest generation CIGS solar cells with picosecond pulses , 2012, LASE.

[7]  M. Domke,et al.  Pump-probe Microscopy Investigations on Fs-laser Ablation of Thin Ta2O5/Pt Layer Systems , 2012 .

[8]  H. Huber,et al.  Ultrafast Lasers Improve the Efficiency of CIS Thin Film Solar Cells , 2012 .

[9]  D. Hariskos,et al.  New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .

[10]  H. Huber,et al.  All Laser Patterning Serial Interconnection for Highly Efficient CIGSSe Modules , 2011 .

[11]  J. Palm,et al.  Towards Module Efficiencies of 16% with an Improved CIGSSe Device Design , 2011 .

[12]  Matthias Domke,et al.  Investigation of the ablation of zinc oxide thin films on copper–indium-selenide layers by ps laser pulses , 2011 .

[13]  C. Hellwig,et al.  Laser ablation of thin molybdenum films on transparent substrates at low fluences , 2011 .

[14]  Matthias Domke,et al.  Monolithical Serial Interconnects of Large CIS Solar Cells with Picosecond Laser Pulses , 2011 .

[15]  F. Pern,et al.  All-laser scribing for thin-film CuInGaSe2 solar cells , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[16]  M. Gedvilas,et al.  ps-laser scribing of CIGS films at different wavelengths , 2010 .

[17]  Dirk Herzog,et al.  Picosecond laser ablation of SiO2 layers on silicon substrates , 2010 .

[18]  Heinz P. Huber,et al.  Monolithic interconnection of CIGSSe solar cells by picosecond laser structuring , 2010, LASE.

[19]  Marika Edoff,et al.  Laser patterning of P2 interconnect via in thin-film CIGS PV modules , 2008 .

[20]  Heinz P. Huber,et al.  Selective structuring of thin-film solar cells by ultrafast laser ablation , 2008, SPIE LASE.

[21]  M. Gedvilas,et al.  Patterning of ITO Layer on Glass with High Repetition Rate Picosecond Lasers , 2007 .

[22]  H. Vogt,et al.  New developments in Cu(In,Ga)(S, Se)2 thin film modules formed by rapid thermal processing of stacked elemental layers , 2006 .

[23]  M. Sentis,et al.  Selective ablation of thin films with short and ultrashort laser pulses , 2006 .

[24]  Wataru Shinohara,et al.  Applications of laser patterning to fabricate innovative thin-film silicon solar cells , 2006, SPIE LASE.

[25]  Jean-François Guillemoles,et al.  Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers , 2006 .

[26]  G. Reider,et al.  Enhancement of laser ablation yield by two color excitation , 2005 .

[27]  Klaus Zimmer,et al.  Etching of CuInSe2 thin films-comparison of femtosecond and picosecond laser ablation , 2005 .

[28]  José Luis Ocaña,et al.  Microprocessing of ITO and a-Si thin films using ns laser sources , 2005 .

[29]  M. Powalla,et al.  CIS solar modules: pilot production at Wuerth Solar , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[30]  Vivi Tornari,et al.  Comparison of laser induced front- and rear-side ablation , 2003, International Symposium on Laser Precision Microfabrication.

[31]  Günther Paltauf,et al.  Photomechanical processes and effects in ablation. , 2003, Chemical reviews.

[32]  David R. Clarke,et al.  Mechanics of laser-assisted debonding of films , 2001 .

[33]  Alvin D. Compaan,et al.  Laser scribing of polycrystalline thin films , 2000 .

[34]  H. Schock,et al.  Model for electronic transport in Cu(In,Ga)Se2 solar cells , 1998 .

[35]  P. R. Bolton,et al.  Laser-induced back-ablation of aluminum thin films using picosecond laser pulses , 1998, Other Conferences.

[36]  Marc Burgelman,et al.  Calculation of CIS and CdTe module efficiencies. , 1998 .

[37]  Oliver Ambacher,et al.  Optical Process for Liftoff of Group III-Nitride Films , 1997 .

[38]  H. Schock,et al.  Scaling-up of CIS technology for thin-film solar modules , 1996 .

[39]  A. Tünnermann,et al.  Femtosecond, picosecond and nanosecond laser ablation of solids , 1996 .

[40]  Wolfgang Riedl,et al.  Advanced Stacked Elemental Layer Process for Cu(InGa)Se 2 Thin Film Photovoltaic Devices , 1996 .

[41]  M. Stuke,et al.  Sub-picosecond UV laser ablation of metals , 1995 .

[42]  Gerard Mourou,et al.  Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs , 1994 .

[43]  J. Liu Simple technique for measurements of pulsed Gaussian-beam spot sizes. , 1982, Optics letters.

[44]  E. D. Cyan Handbook of Chemistry and Physics , 1970 .