Machine-Aided Annotation for Fine-Grained Proposition Types in Argumentation

We introduce a corpus of the 2016 U.S. presidential debates and commentary, containing 4,648 argumentative propositions annotated with fine-grained proposition types. Modern machine learning pipelines for analyzing argument have difficulty distinguishing between types of propositions based on their factuality, rhetorical positioning, and speaker commitment. Inability to properly account for these facets leaves such systems inaccurate in understanding of fine-grained proposition types. In this paper, we demonstrate an approach to annotating for four complex proposition types, namely normative claims, desires, future possibility, and reported speech. We develop a hybrid machine learning and human workflow for annotation that allows for efficient and reliable annotation of complex linguistic phenomena, and demonstrate with preliminary analysis of rhetorical strategies and structure in presidential debates. This new dataset and method can support technical researchers seeking more nuanced representations of argument, as well as argumentation theorists developing new quantitative analyses.

[1]  Sharad Goel,et al.  The Measure and Mismeasure of Fairness: A Critical Review of Fair Machine Learning , 2018, ArXiv.

[2]  Catherine C. Marshall,et al.  Debugging a Crowdsourced Task with Low Inter-Rater Agreement , 2015, JCDL.

[3]  Yuan Ma,et al.  What works and what does not: Classifier and feature analysis for argument mining , 2017, ArgMining@EMNLP.

[4]  Brian Ecker,et al.  Argument Mining: Extracting Arguments from Online Dialogue , 2015, SIGDIAL Conference.

[5]  Serena Villata,et al.  Argument Mining , 2016, IEEE Intell. Informatics Bull..

[6]  Chris Westrup Representing Reality: Discourse, Rhetoric and Social Construction , 2013 .

[7]  Bronwyn Woods,et al.  Formative Essay Feedback Using Predictive Scoring Models , 2017, KDD.

[8]  Jonathan T. Morgan,et al.  Annotating Social Acts: Authority Claims and Alignment Moves in Wikipedia Talk Pages , 2011 .

[9]  Lars Borin,et al.  Towards Assessing Argumentation Annotation - A First Step , 2019, ArgMining@ACL.

[10]  Andreas Herrmann,et al.  The moderating effect of manipulative intent and cognitive resources on the evaluation of narrative ads , 2010 .

[11]  Chris Reed,et al.  Argument Mining: A Survey , 2020, Computational Linguistics.

[12]  Yulia Tsvetkov,et al.  Style Transfer Through Back-Translation , 2018, ACL.

[13]  Katsuhide Fujita,et al.  Annotating and Analyzing Semantic Role of Elementary Units and Relations in Online Persuasive Arguments , 2019, ACL.

[14]  Claire Cardie,et al.  Toward machine-assisted participation in eRulemaking: an argumentation model of evaluability , 2015, ICAIL.

[15]  Fabio Crestani,et al.  A Test Collection for Research on Depression and Language Use , 2016, CLEF.

[16]  Janyce Wiebe,et al.  Benefactive/Malefactive Event and Writer Attitude Annotation , 2013, ACL.

[17]  Vincent Ng,et al.  End-to-End Argumentation Mining in Student Essays , 2016, NAACL.

[18]  S. Villata,et al.  Annotation of Argument Components in Political Debates Data , 2018 .

[19]  Yejin Choi,et al.  Syntactic Stylometry for Deception Detection , 2012, ACL.

[20]  Peter Lasersohn,et al.  Relative truth, speaker commitment, and control of implicit arguments , 2007, Synthese.

[21]  Andreas Vlachos,et al.  FEVER: a Large-scale Dataset for Fact Extraction and VERification , 2018, NAACL.

[22]  Paolo Torroni,et al.  Argumentation Mining , 2016, ACM Trans. Internet Techn..

[23]  E. Nussbaum,et al.  Argumentation, Dialogue Theory, and Probability Modeling: Alternative Frameworks for Argumentation Research in Education , 2011 .

[24]  Francesca Toni,et al.  Combining Deep Learning and Argumentative Reasoning for the Analysis of Social Media Textual Content Using Small Data Sets , 2018, Computational Linguistics.

[25]  Serena Villata,et al.  Different Flavors of Attention Networks for Argument Mining , 2019, FLAIRS Conference.

[26]  Yoav Goldberg,et al.  Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in Word Embeddings But do not Remove Them , 2019, NAACL-HLT.

[27]  Beata Beigman Klebanov,et al.  Toward the Automated Scoring of Written Arguments: Developing an Innovative Approach for Annotation , 2017 .

[28]  Lynette Hirschman,et al.  Is the Juice Worth the Squeeze? Costs and Benefits of Multiple Human Annotators for Clinical Text De-identification , 2016, Methods of Information in Medicine.

[29]  Chris Reed,et al.  Argumentation Schemes , 2008 .

[30]  Diane J. Litman,et al.  Argument Mining for Improving the Automated Scoring of Persuasive Essays , 2018, AAAI.

[31]  Claire Cardie,et al.  A Corpus of eRulemaking User Comments for Measuring Evaluability of Arguments , 2018, LREC.

[32]  Jean H. M. Wagemans,et al.  Constructing a Periodic Table of Arguments , 2016 .

[33]  K. Bretonnel Cohen,et al.  Sentiment Analysis of Suicide Notes: A Shared Task , 2012, Biomedical informatics insights.

[34]  Jason Turcotte,et al.  The News Norms and Values of Presidential Debate Agendas: An Analysis of Format and Moderator Influence on Question Content , 2015 .

[35]  Iryna Gurevych,et al.  Parsing Argumentation Structures in Persuasive Essays , 2016, CL.

[36]  Jacques Savoy,et al.  Trump’s and Clinton’s Style and Rhetoric during the 2016 Presidential Election , 2018, Journal of Quantitative Linguistics.

[37]  Graeme Hirst,et al.  Argumentation Mining in Parliamentary Discourse , 2015, PRIMA Workshops.

[38]  Iryna Gurevych,et al.  Automatic Annotation Suggestions and Custom Annotation Layers in WebAnno , 2014, ACL.

[39]  Scott F. Aikin,et al.  Two Forms of the Straw Man , 2006 .

[40]  Marilyn A. Walker,et al.  A Corpus for Research on Deliberation and Debate , 2012, LREC.

[41]  Marie-Catherine de Marneffe,et al.  Evaluating BERT for natural language inference: A case study on the CommitmentBank , 2019, EMNLP.

[42]  Iryna Gurevych,et al.  The INCEpTION Platform: Machine-Assisted and Knowledge-Oriented Interactive Annotation , 2018, COLING.

[43]  Marilyn Jackson-Beeck,et al.  The Triple Agenda of Presidential Debates , 1979 .

[44]  Carolyn Penstein Rosé,et al.  Recognizing Rare Social Phenomena in Conversation: Empowerment Detection in Support Group Chatrooms , 2013, ACL.

[45]  Carolyn Penstein Rosé,et al.  Attentive Interaction Model: Modeling Changes in View in Argumentation , 2018, NAACL.

[46]  Chris Reed,et al.  I didn’t say that! Uses of SAY in mediation discourse , 2017 .

[47]  Jochen L. Leidner,et al.  Ethical by Design: Ethics Best Practices for Natural Language Processing , 2017, EthNLP@EACL.

[48]  Regis Pires Magalhães,et al.  Improving Named Entity Recognition using Deep Learning with Human in the Loop , 2019, EDBT.

[49]  Swapna Somasundaran,et al.  Recognizing Stances in Ideological On-Line Debates , 2010, HLT-NAACL 2010.

[50]  David W. McDonald,et al.  Evaluating a Computational Approach to Labeling Politeness , 2017, Proc. ACM Hum. Comput. Interact..

[51]  Chris Reed,et al.  An Online Annotation Assistant for Argument Schemes , 2019, LAW@ACL.

[52]  Patrick Saint-Dizier,et al.  Argument Mining: Linguistic Foundations , 2019 .

[53]  Luca Lugini,et al.  Argument Component Classification for Classroom Discussions , 2018, ArgMining@EMNLP.

[54]  Emanuele Pianta,et al.  The TextPro Tool Suite , 2008, LREC.

[55]  Chris Reed,et al.  Mining Ethos in Political Debate , 2016, COMMA.

[56]  Brendan T. O'Connor,et al.  Cheap and Fast – But is it Good? Evaluating Non-Expert Annotations for Natural Language Tasks , 2008, EMNLP.

[57]  Muhammad Imran,et al.  Twitter as a Lifeline: Human-annotated Twitter Corpora for NLP of Crisis-related Messages , 2016, LREC.

[58]  Chris Reed,et al.  A Cascade Model for Proposition Extraction in Argumentation , 2019, ArgMining@ACL.

[59]  Claire Cardie,et al.  Argument Mining with Structured SVMs and RNNs , 2017, ACL.

[60]  Marcin Koszowy,et al.  Argumentation in the 2016 US presidential elections: annotated corpora of television debates and social media reaction , 2019, Language Resources and Evaluation.

[61]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.