Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems

Information pertaining to enzymatic hydrolysis of cellulose by noncomplexed cellulase enzyme systems is reviewed with a particular emphasis on development of aggregated understanding incorporating substrate features in addition to concentration and multiple cellulase components. Topics considered include properties of cellulose, adsorption, cellulose hydrolysis, and quantitative models. A classification scheme is proposed for quantitative models for enzymatic hydrolysis of cellulose based on the number of solubilizing activities and substrate state variables included. We suggest that it is timely to revisit and reinvigorate functional modeling of cellulose hydrolysis, and that this would be highly beneficial if not necessary in order to bring to bear the large volume of information available on cellulase components on the primary applications that motivate interest in the subject. © 2004 Wiley Periodicals, Inc.

[1]  P. Karrer,et al.  Polysaccharide XXXIII. Über enzymatische Abbau von Kunstseide und nativer Cellulose , 1925 .

[2]  P. Karrer,et al.  Polysaccharide XXXV. Weitere Beiträge zum enzymatischen Abbau der Kunstseide und nativer Cellulose , 1926 .

[3]  E. Reese,et al.  THE BIOLOGICAL DEGRADATION OF SOLUBLE CELLULOSE DERIVATIVES AND ITS RELATIONSHIP TO THE MECHANISM OF CELLULOSE HYDROLYSIS , 1950, Journal of bacteriology.

[4]  R. H. Hopkins,et al.  Structure of Starch , 1953, Nature.

[5]  E. Reese Enzymatic Hydrolysis of Cellulose , 1956 .

[6]  The mechanism of degradation of cellulose by Myrothecium cellulase. , 1957, Canadian journal of biochemistry and physiology.

[7]  G. L. Miller,et al.  Measurement of carboxymethylcellulase activity , 1960 .

[8]  The degradation of cotton cellulose by the extracellular cellulase of Myrothecium verrucaria , 1961 .

[9]  K. W. King,et al.  Individual roles of cellulase components derived from Trichoderma viride. , 1965, Archives of biochemistry and biophysics.

[10]  K. Kopecky,et al.  Preparation and base-catalyzed reactions of some β-halohydroperoxides , 1968 .

[11]  E. Reese,et al.  Glucosidases and exo-glucanases. , 1968, Canadian journal of biochemistry.

[12]  J. E. Stone,et al.  Digestibility as a Simple Function of a Molecule of Similar Size to a Cellulase Enzyme , 1969 .

[13]  T. Ghose Continuous enzymatic saccharification of cellulose with culture filtrates of trichoderma viride QM 6a. , 1969 .

[14]  G. Halliwell,et al.  The formation of short fibres from native cellulose by components of Trichoderma koningii cellulase. , 1970, The Biochemical journal.

[15]  T. Wood,et al.  The purification and properties of the C 1 component of Trichoderma koningii cellulase. , 1972, The Biochemical journal.

[16]  L. Berghem,et al.  The mechanism of enzymatic cellulose degradation. Purification of a cellulolytic enzyme from Trichoderma viride active on highly ordered cellulose. , 1973, European journal of biochemistry.

[17]  L. Berghem,et al.  The Mechanism of Enzymatic Cellulose Degradation , 1973 .

[18]  Pettersson Lg,et al.  The mechanism of enzymatic cellulose degradation. Isolation and some properties of a beta-glucosidase from Trichoderma viride. , 1974 .

[19]  K. Gardner,et al.  The hydrogen bonding in native cellulose. , 1974, Biochimica et biophysica acta.

[20]  L. Berghem,et al.  The mechanism of enzymatic cellulose degradation. Isolation and some properties of a beta-glucosidase from Trichoderma viride. , 1974, European journal of biochemistry.

[21]  K. Marshall,et al.  Some Physical Characteristics of Microcrystalline Cellulose 1. Powders for Pharmaceutical Use , 1974 .

[22]  D. Caulfield,et al.  Effect of varying crystallinity of cellulose on enzymic hydrolysis , 1974 .

[23]  K. Gardner,et al.  The structure of native cellulose , 1974 .

[24]  M. Moo-Young,et al.  Degradation of polysaccharides by endo and exo enzymes: A theoretical analysis , 1975 .

[25]  A A Huang,et al.  Kinetic studies on insoluble cellulose–cellulase system , 1975, Biotechnology and bioengineering.

[26]  B. Pettersson,et al.  Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose. 1. Separation, purification and physico-chemical characterization of five endo-1,4-beta-glucanases. , 1975, European journal of biochemistry.

[27]  T. Wood Properties and mode of action of cellulases. , 1975, Biotechnology and bioengineering symposium.

[28]  J. W. Koenigs Hydrogen peroxide and iron: a microbial cellulolytic system? , 1975, Biotechnology and bioengineering symposium.

[29]  J. Howell,et al.  Kinetics of solka floc cellulose hydrolysis by trichoderma viride cellulase , 1975 .

[30]  E. Cowling,et al.  Properties of cellulose and lignocellulosic materials as substrates for enzymatic conversion processes. , 1976, Biotechnology and bioengineering symposium.

[31]  A. J. Baker,et al.  Physical and chemical pretreatments for enhancing cellulose saccharification. , 1976, Biotechnology and bioengineering symposium.

[32]  R. Brown,et al.  Comparison of four purified extracellular 1,4-beta-D-glucan cellobiohydrolase enzymes from Trichoderma viride. , 1977, Biochimica et biophysica acta.

[33]  G. T. Tsao,et al.  Cellobiase from Trichoderma viride: Purification, properties, kinetics, and mechanism , 1977, Biotechnology and bioengineering.

[34]  J. Howell,et al.  Enzyme deactivation during cellulose hydrolysis , 1978 .

[35]  T. Wood,et al.  The cellulase of Trichoderma koningii. Purification and properties of some endoglucanase components with special reference to their action on cellulose when acting alone and in synergism with the cellobiohydrolase. , 1978, The Biochemical journal.

[36]  R. Brown,et al.  Enzymic activities of endo-1,4-β-d-glucanases purified from Trichoderma viride , 1978 .

[37]  M. Moo-young,et al.  Kinetics of enzymatic hydrolysis of cellulose: Analytical description of a mechanistic model , 1978, Biotechnology and bioengineering.

[38]  V. Bisaria,et al.  Studies on the mechanism of enzymatic hydrolysis of cellulosic substances , 1979, Biotechnology and bioengineering.

[39]  A. Striegel,et al.  Modern size-exclusion liquid chromatography , 1979 .

[40]  Mikelina Gritzali,et al.  The Cellulase System ofTrichoderma: Relationships Between Purified Extracellular Enzymes from Induced or Cellulose-Grown Cells , 1979 .

[41]  T. Wood,et al.  Synergism Between Enzymes Involved in the Solubilization of Native Cellulose , 1979 .

[42]  E. Ross,et al.  Mathematical model for enzymatic hydrolysis and fermentation of cellulose by Trichoderma , 1979 .

[43]  L. Fan,et al.  Kinetics of Hydrolysis of Insoluble Cellulose by Cellulase , 1980, Products from Alkanes, Cellulose and other Feedstocks.

[44]  L. Fan,et al.  Mechanism of the enzymatic hydrolysis of cellulose: Effects of major structural features of cellulose on enzymatic hydrolysis , 1980 .

[45]  J. Zeikus,et al.  A continuous spectrophotometric assay for the determination of cellulase solubilizing activity. , 1980, Analytical biochemistry.

[46]  C. Gong,et al.  Kinetic studies of cellodextrins hydrolyses by exocellulase from Trichoderma reesei , 1980 .

[47]  Alvin O. Converse,et al.  Partial acid hydrolysis of cellulosic materials as a pretreatment for enzymatic hydrolysis , 1980 .

[48]  M. Chang,et al.  Structure, pretreatment and hydrolysis of cellulose , 1981 .

[49]  Yoshimi Yamada,et al.  A kinetic equation for hydrolysis of polysaccharides by mixed exo‐ and endoenzyme systems , 1981 .

[50]  J. Millet,et al.  Purification and properties of an endo-beta-1,4-glucanase from Clostridium thermocellum. , 1981, Biochimie.

[51]  Cellulase kinetics. , 1981, Basic life sciences.

[52]  R. Brown,et al.  Enzymatic hydrolysis of cellulose: Visual characterization of the process. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[53]  L. Fan,et al.  The influence of major structural features of cellulose on rate of enzymatic hydrolysis , 1981 .

[54]  R. Wolfe,et al.  Trends in the Biology of Fermentations for Fuels and Chemicals , 1981, Basic Life Sciences.

[55]  L. Fan,et al.  Kinetic studies of enzymatic hydrolysis of insoluble cellulose: Analysis of the initial rates , 1982, Biotechnology and bioengineering.

[56]  C. Wandrey,et al.  Gel chromatography of oligosaccharides up to dp 60 , 1982 .

[57]  Sun Bok Lee,et al.  Effect of compression milling on cellulose structure and on enzymatic hydrolysis kinetics , 1982, Biotechnology and bioengineering.

[58]  W. Martin,et al.  Simultaneous saccharification and fermentation of cellulose: effect of β-d-glucosidase activity and ethanol inhibition of cellulases , 1982 .

[59]  H. van Tilbeurgh,et al.  The use of 4‐methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes , 1982 .

[60]  Sun Bok Lee,et al.  Adsorption of cellulase on cellulose: Effect of physicochemical properties of cellulose on adsorption and rate of hydrolysis , 1982, Biotechnology and bioengineering.

[61]  P. Carniti,et al.  Cotton cellulose: enzyme adsorption and enzymatic hydrolysis , 1982 .

[62]  M. M. Gharpuray,et al.  Structural modification of lignocellulosics by pretreatments to enhance enzymatic hydrolysis , 1983, Biotechnology and bioengineering.

[63]  H. Ooshima,et al.  Adsorption of cellulase from Trichoderma viride on cellulose , 1983, Biotechnology and bioengineering.

[64]  H. Ooshima,et al.  Kinetic study on enzymatic hydrolysis of cellulose by cellulose from Trichoderma viride , 1983, Biotechnology and bioengineering.

[65]  E Setter,et al.  Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum , 1983, Journal of bacteriology.

[66]  Michael R. Ladisch,et al.  Process considerations in the enzymatic hydrolysis of biomass , 1983 .

[67]  H. Taguchi,et al.  Structural properties of cellulose and cellulase reaction mechanism , 1983, Biotechnology and bioengineering.

[68]  B. Henrissat,et al.  The action of 1,4‐β‐D‐glucan cellobiohydrolase on Valonia cellulose microcrystals , 1983 .

[69]  L T Fan,et al.  Kinetic studies of enzymatic hydrolysis of insoluble cellulose: Derivation of a mechanistic kinetic model , 1983, Biotechnology and bioengineering.

[70]  S. Shoemaker,et al.  Characterization and Properties of Cellulases Purified from Trichoderma Reesei Strain L27 , 1983, Bio/Technology.

[71]  M. Coughlan,et al.  Sorption of Talaromyces emersonii cellulase on cellulosic substrates , 1983, Biotechnology and bioengineering.

[72]  Modelling the bioconversion of cellulose into microbial products: rate limitations , 1984 .

[73]  M. Holtzapple,et al.  A comparison of two empirical models for the enzymatic hydrolysis of pretreated poplar wood , 1984, Biotechnology and bioengineering.

[74]  P. Beltrame,et al.  Enzymatic hydrolysis of cellulosic materials: A kinetic study , 1984, Biotechnology and bioengineering.

[75]  R. Atalla,et al.  Native Cellulose: A Composite of Two Distinct Crystalline Forms , 1984, Science.

[76]  H. van Tilbeurgh,et al.  Separation of endo‐ and exo‐type cellulases using a new affinity chromatography method , 1984 .

[77]  M. Holtzapple,et al.  Determining the inhibition constants in the HCH‐1 model of cellulose hydrolysis , 1984, Biotechnology and bioengineering.

[78]  M. Thoma,et al.  Modelling of the enzymatic hydrolysis of cellobiose and cellulose by a complex enzyme mixture of Trichoderma reesei QM 9414 , 1984, Applied Microbiology and Biotechnology.

[79]  V. Puri Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification , 1984, Biotechnology and bioengineering.

[80]  Stephen E. Wald,et al.  Kinetics of the enzymatic hydrolysis of cellulose , 1984, Biotechnology and bioengineering.

[81]  M. Holtzapple,et al.  The HCH‐1 model of enzymatic cellulose hydrolysis , 1984, Biotechnology and bioengineering.

[82]  M. Mandels,et al.  Competitive adsorption of cellulase components and its significance in a synergistic mechanism , 1984, Biotechnology and bioengineering.

[83]  B. Henrissat,et al.  Colloidal gold labelling of l,4‐β‐D‐glucan cellobiohydrolase adsorbed on cellulose substrates , 1984 .

[84]  Reaktionsmechanismus und Strukturänderungen beim enzymatischen Abbau von Cellulose durch Trichoderma-reesei-Cellulase , 1985 .

[85]  Bruce E. Dale,et al.  Cellulose Pretreatments: Technology and Techniques , 1985 .

[86]  B. Henrissat,et al.  Synergism of Cellulases from Trichoderma reesei in the Degradation of Cellulose , 1985, Bio/Technology.

[87]  T. Wood Properties of cellulolytic enzyme systems. , 1985, Biochemical Society transactions.

[88]  R. Patil,et al.  Synergism between enzymes of Sclerotium rolfsii involved in the solubilization of crystalline cellulose , 1985 .

[89]  Michael P. Coughlan,et al.  The Properties of Fungal and Bacterial Cellulases with Comment on their Production and Application , 1985 .

[90]  H. Grethlein,et al.  The Effect of Pore Size Distribution on the Rate of Enzymatic Hydrolysis of Cellulosic Substrates , 1985, Bio/Technology.

[91]  G. Caminal,et al.  Kinetic modeling of the enzymatic hydrolysis of pretreated cellulose , 1985, Biotechnology and bioengineering.

[92]  A. Gusakov,et al.  Kinetics of the enzymatic hydrolysis of cellulose: 1. A mathematical model for a batch reactor process , 1985 .

[93]  M. Mandels Applications of cellulases. , 1985, Biochemical Society transactions.

[94]  F. Rombouts,et al.  The cellulase of Trichoderma viride , 1985 .

[95]  A. Gusakov,et al.  A product inhibition study of cellulases from Trichoderma longibrachiatum using dyed cellulose , 1985 .

[96]  A. Lappalainen,et al.  A new appraisal of the endoglucanases of the fungus Trichoderma reesei. , 1985, The Biochemical journal.

[97]  B. Dale,et al.  Enzymatic hydrolysis and recrystallization behavior of initially amorphous cellulose , 1985, Biotechnology and bioengineering.

[98]  A. Gusakov,et al.  Kinetics of the enzymatic hydrolysis of cellulose: 2. A mathematical model for the process in a plug-flow column reactor , 1985 .

[99]  M Penttilä,et al.  Homology between cellulase genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase I gene. , 1986, Gene.

[100]  T. Wood,et al.  The cellulase of Penicillium pinophilum. Synergism between enzyme components in solubilizing cellulose with special reference to the involvement of two immunologically distinct cellobiohydrolases. , 1986, The Biochemical journal.

[101]  Tuula T. Teeri,et al.  Cellulase families and their genes , 1987 .

[102]  Enzymatic hydrolysis of cellulosic materials , 1987 .

[103]  F. Rombouts,et al.  Adsorption and kinetic behavior of purified endoglucanases and exoglucanases from Trichoderma viride , 1987, Biotechnology and bioengineering.

[104]  D. Kilburn,et al.  A bifunctional exoglucanase-endoglucanase fusion protein. , 1987, Gene.

[105]  C. MacKenzie,et al.  Detection and characterization of the specific and nonspecific endoglucanases of Trichoderma reesei: Evidence demonstrating endoglucanase activity by cellobiohydrolase II , 1987 .

[106]  T. Enari,et al.  Enzymatic hydrolysis of cellulose: is the current theory of the mechanisms of hydrolysis valid? , 1987, Critical reviews in biotechnology.

[107]  On the use of an adsorption model to represent the effect of steam explosion pretreatment on the enzymatic hydrolysis of lignocellulosic substances , 1987 .

[108]  KINETIC MODELING OF SIMULTANEOUS SACCHARIFICATION AND FERMENTATION OF CELLULOSE , 1988 .

[109]  T. Wood Cellulase of Trichoderma koninǵii , 1988 .

[110]  M. Lima,et al.  The role of cellulase concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose. , 1988, The Biochemical journal.

[111]  M. Ladisch,et al.  Preparation of cellodextrins , 1988 .

[112]  D. Kilburn,et al.  Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. , 1988, The Journal of biological chemistry.

[113]  C. Wandrey,et al.  Preparation of cellodextrins and isolation of oligomeric side components and their characterization. , 1988, Analytical biochemistry.

[114]  T. Wood,et al.  METHODS FOR MEASURING CELLULASE ACTIVITIES , 1988 .

[115]  P. Wilkinson,et al.  Chemotaxis: an overview. , 1988, Methods in enzymology.

[116]  J. Vandekerckhove,et al.  Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. , 1988, European journal of biochemistry.

[117]  T. M. Wood,et al.  Increasing the availability of cellulose in biomass materials , 1988 .

[118]  B. Henrissat,et al.  Possible adsorption sites of cellulases on crystalline cellulose , 1988 .

[119]  T. Wood Preparation of crystalline, amorphous, and dyed cellulase substrates , 1988 .

[120]  J. Millet,et al.  Biochemistry and genetics of cellulose degradation. , 1988 .

[121]  A. Voragen,et al.  Synergism in cellulose hydrolysis by endoglucanases and exoglucanases purified from Trichoderma viride. , 1988, Biotechnology and bioengineering.

[122]  C. MacKenzie,et al.  Effect of physical parameters on the adsorption characteristics of fractionated Trichoderma reesei cellulase components , 1988 .

[123]  A. Klyosov,et al.  Adsorption of high-purity endo-1,4-β-glucanases from Trichoderma reesei on components of lignocellulosic materials: Cellulose, lignin, and xylan , 1988 .

[124]  M Tanaka,et al.  A model of enzyme adsorption and hydrolysis of microcrystalline cellulose with slow deactivation of the adsorbed enzyme , 1988, Biotechnology and bioengineering.

[125]  W. Steiner,et al.  Adsorption of Trichoderma reesei cellulase on cellulose: Experimental data and their analysis by different equations , 1988, Biotechnology and bioengineering.

[126]  M. K. Hayes,et al.  Hydrolysis of Cellulose by Saturating and Non–Saturating Concentrations of Cellulase: Implications for Synergism , 1988, Bio/Technology.

[127]  C. MacKenzie,et al.  Reversibility and competition in the adsorption of Trichoderma reesei cellulase components , 1989, Biotechnology and bioengineering.

[128]  H. van Tilbeurgh,et al.  Fungal cellulase systems. Comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei. , 1989, The Biochemical journal.

[129]  W. Steiner,et al.  The effect of enzyme concentration on the rate of the hydrolysis of cellulose , 1989, Biotechnology and bioengineering.

[130]  A. Gusakov,et al.  Decrease in reactivity and change of physico-chemical parameters of cellulose in the course of enzymatic hydrolysis , 1989 .

[131]  P. Kraulis,et al.  Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. , 1989, Biochemistry.

[132]  Mark Holtzapple,et al.  Inhibition of Trichoderma reesei cellulase by sugars and solvents , 1990, Biotechnology and bioengineering.

[133]  C. Wandrey,et al.  Evidence for the lack of exo-cellobiohydrolase activity in the cellulase system of Trichoderma reesei QM 9414 , 1990 .

[134]  L. Walker,et al.  Measuring fragmentation of cellulose by Thermomonospora fusca cellulase , 1990 .

[135]  P. Weimer,et al.  Effect of cellulose fine structure on kinetics of its digestion by mixed ruminal microorganisms in vitro , 1990, Applied and environmental microbiology.

[136]  J. Knowles,et al.  Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. , 1990, Science.

[137]  J. Schurz,et al.  Changes of structure and morphology of regenerated cellulose caused by acid and enzymatic hydrolysis , 1990 .

[138]  A. Klyosov,et al.  Trends in biochemistry and enzymology of cellulose degradation. , 1990, Biochemistry.

[139]  A. Converse,et al.  Adsorption of cellulase from Trichoderma reesei on cellulose and lignacious residue in wood pretreated by dilute sulfuric acid with explosive decompression , 1990, Biotechnology and bioengineering.

[140]  A. Converse,et al.  The effect of enzyme and substrate levels on the specific hydrolysis rate of pretreated poplar wood , 1991 .

[141]  Douglas E. Eveleigh,et al.  Characteristics of fungal cellulases , 1991 .

[142]  J. Woodward Synergism in cellulase systems , 1991 .

[143]  M. Penner,et al.  Apparent substrate inhibition of the Trichoderma reesei cellulase system , 1991 .

[144]  B. Henrissat,et al.  Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. , 1991, Microbiological reviews.

[145]  D. Kilburn,et al.  Non–Hydrolytic Disruption of Cellulose Fibres by the Binding Domain of a Bacterial Cellulase , 1991, Bio/Technology.

[146]  Walter Steiner,et al.  Production of Trichoderma cellulase in laboratory and pilot scale , 1991 .

[147]  L. Lynd,et al.  Fuel Ethanol from Cellulosic Biomass , 1991, Science.

[148]  T. M. Wood,et al.  The degradation pattern of cellulose by extracellular cellulases of aerobic and anaerobic microorganisms , 1991 .

[149]  H. Grethlein,et al.  Common aspects of acid prehydrolysis and steam explosion for pretreating wood , 1991 .

[150]  Alexander V. Gusakov,et al.  Effect of structural and physico-chemical features of cellulosic substrates on the efficiency of enzymatic hydrolysis , 1991 .

[151]  B Henrissat,et al.  A classification of glycosyl hydrolases based on amino acid sequence similarities. , 1991, The Biochemical journal.

[152]  Enzymatic activity of cellulase adsorbed on cellulose and its change during hydrolysis , 1991, Applied biochemistry and biotechnology.

[153]  J. Ståhlberg,et al.  A New Model For Enzymatic Hydrolysis of Cellulose Based on the Two-Domain Structure of Cellobiohydrolase I , 1991, Bio/Technology.

[154]  L. Walker,et al.  Enzymatic hydrolysis of cellulose: An overview , 1991 .

[155]  E. Bayer,et al.  Efficient cellulose solubilization by a combined cellulosome-β-glucosidase system , 1991 .

[156]  A. Gusakov,et al.  A theoretical analysis of cellulase product inhibition: Effect of cellulase binding constant, enzyme/substrate ratio, and β‐glucosidase activity on the inhibition pattern , 1992, Biotechnology and bioengineering.

[157]  M. Hayn,et al.  Purification and characterization of two extracellular beta-glucosidases from Trichoderma reesei. , 1992, Biochimica et biophysica acta.

[158]  L. Walker,et al.  Fragmentation of cellulose by the major Thermomonospora fusca cellulases, Trichoderma reesei CBHI, and their mixtures , 1992, Biotechnology and bioengineering.

[159]  B. Henrissat,et al.  The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. , 1992, The Journal of biological chemistry.

[160]  P. Kraulis,et al.  Investigation of the function of mutated cellulose‐binding domains of Trichoderma reesei cellobiohydrolase I , 1992, Proteins.

[161]  Charles E. Wyman,et al.  Mathematical modeling of cellulose conversion to ethanol by the simultaneous saccharification and fermentation process , 1992 .

[162]  Dong Won Kim,et al.  Adsorption kinetics and behaviors of cellulase components on microcrystalline cellulose , 1992 .

[163]  K. Affholter,et al.  Does cellobiohydrolase II core protein from Trichoderma reesei disperse cellulose macrofibrils , 1992 .

[164]  E. Agosin,et al.  Changes in Molecular Size Distribution of Cellulose during Attack by White Rot and Brown Rot Fungi , 1992, Applied and environmental microbiology.

[165]  V. Zverlov,et al.  Synergism betweenClostridiwn Thermocellum cellulases cloned inEscherichia coli , 1992, Applied biochemistry and biotechnology.

[166]  Solute exclusion from cellulose in packed columns: Process modeling and analysis , 1992, Biotechnology and bioengineering.

[167]  E G Koukios,et al.  Correlating the effect of pretreatment on the enzymatic hydrolysis of straw , 1992, Biotechnology and bioengineering.

[168]  J. Ståhlberg,et al.  Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose. , 1993, Biochimica et biophysica acta.

[169]  I. H. Segel,et al.  Characterization of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A , 1993, Journal of bacteriology.

[170]  D. Kilburn,et al.  The cellulose‐binding domain (CBDCex) of an exoglucanase from Cellulomonas fimi: Production in Escherichia coli and characterization of the polypeptide , 1993, Biotechnology and bioengineering.

[171]  H. Krässig,et al.  Cellulose : structure, accessibility, and reactivity , 1993 .

[172]  L. Walker,et al.  Activity studies of eight purified cellulases: Specificity, synergism, and binding domain effects , 1993, Biotechnology and bioengineering.

[173]  C. Divne,et al.  Crystallization and preliminary X-ray studies on the core proteins of cellobiohydrolase I and endoglucanase I from Trichoderma reesei. , 1993, Journal of molecular biology.

[174]  C. Wyman,et al.  Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process , 1993, Biotechnology and bioengineering.

[175]  M. Penttilä,et al.  Role of the interdomain linker peptide of Trichoderma reesei cellobiohydrolase I in its interaction with crystalline cellulose. , 1993, The Journal of biological chemistry.

[176]  W. Steiner,et al.  A new approach for modeling cellulase–cellulose adsorption and the kinetics of the enzymatic hydrolysis of microcrystalline cellulose , 1993, Biotechnology and bioengineering.

[177]  H. Bochem,et al.  Formation of cross-fractures in cellulose microfibril structure by an endoglucanase-cellobiohydrolase complex from Trichoderma reesei. , 1993, FEMS microbiology letters.

[178]  A. Converse,et al.  A synergistic kinetics model for enzymatic cellulose hydrolysis compared to degree-of-synergism experimental results. , 1993, Biotechnology and bioengineering.

[179]  A. Mazur,et al.  Multiple attack mechanism in the porcine pancreatic alpha-amylase hydrolysis of amylose and amylopectin. , 1993, Archives of biochemistry and biophysics.

[180]  J. O. Baker,et al.  Cellulase assays: Methods from empirical mathematical models , 1993 .

[181]  L. Lynd,et al.  Adsorption of Clostridium thermocellum cellulases onto pretreated mixed hardwood, avicel, and lignin , 1993, Biotechnology and bioengineering.

[182]  A Bairoch,et al.  New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. , 1993, The Biochemical journal.

[183]  B. Nidetzky,et al.  Specific quantification of trichoderma reesei cellulases in reconstituted mixtures and its application to cellulase–cellulose binding studies , 1994, Biotechnology and bioengineering.

[184]  D. Wilson,et al.  Characterization and sequence of a Thermomonospora fusca xylanase , 1994, Applied and environmental microbiology.

[185]  D. Kilburn,et al.  C1-Cx revisited: intramolecular synergism in a cellulase. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[186]  C. Knowles,et al.  Mammalian cell damage in a novel membrane bioreactor , 1994, Biotechnology and bioengineering.

[187]  N. Gilkes,et al.  Changes in the molecular-size distribution of insoluble celluloses by the action of recombinant Cellulomonas fimi cellulases. , 1994, The Biochemical journal.

[188]  J. Ståhlberg,et al.  Adsorption and synergism of cellobiohydrolase I and II of Trichoderma reesei during hydrolysis of microcrystalline cellulose , 1994, Biotechnology and bioengineering.

[189]  M. Ladisch,et al.  Cellulose pretreatments of lignocellulosic substrates. , 1994, Enzyme and microbial technology.

[190]  Bernd Nidetzky,et al.  Hydrolysis of cellooligosaccharides by Trichoderma reesei cellobiohydrolases: Experimental data and kinetic modeling , 1994 .

[191]  James D. McMillan,et al.  Pretreatment of lignocellulosic biomass , 1994 .

[192]  W. Steiner,et al.  Cellulose hydrolysis by the cellulases from Trichoderma reesei: adsorptions of two cellobiohydrolases, two endocellulases and their core proteins on filter paper and their relation to hydrolysis. , 1994, The Biochemical journal.

[193]  T. Reinikainen,et al.  The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. , 1994, Science.

[194]  The three-dimensional structure of cellobiohydrolase I from Trichoderma reesei , 1994 .

[195]  W. Steiner,et al.  Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. , 1994, The Biochemical journal.

[196]  T. Reinikainen,et al.  Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei , 1995, Proteins.

[197]  D. Kilburn,et al.  Enhancement of the Endo-β-1,4-glucanase Activity of an Exocellobiohydrolase by Deletion of a Surface Loop (*) , 1995, The Journal of Biological Chemistry.

[198]  P. Weimer,et al.  Effects of chemical treatments and heating on the crystallinity of celluloses and their implications for evaluating the effect of crystallinity on cellulose biodegradation , 1995, Biotechnology and bioengineering.

[199]  T. Teeri,et al.  Molecular dynamics simulation of fungal cellulose-binding domains: differences in molecular rigidity but a preserved cellulose binding surface. , 1995, Protein engineering.

[200]  T. Reinikainen,et al.  Low-level endoglucanase contamination in a Trichoderma reesei cellobiohydrolase II preparation affects its enzymatic activity on β-glucan , 1995 .

[201]  N. Gilkes,et al.  Cellulose hydrolysis by bacteria and fungi. , 1995, Advances in microbial physiology.

[202]  M. Wilchek,et al.  Expression, purification, and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellum , 1995, Applied and environmental microbiology.

[203]  M. Bothwell,et al.  Evaluation of parameter estimation methods for estimating cellulase binding constants , 1995 .

[204]  J. Wu,et al.  Exoglucanase activities of the recombinant Clostridium thermocellum CelS, a major cellulosome component , 1995, Journal of bacteriology.

[205]  D. Kilburn,et al.  Comparison of a fungal (family I) and bacterial (family II) cellulose-binding domain , 1995, Journal of bacteriology.

[206]  Lee R. Lynd,et al.  Modeling simultaneous saccharification and fermentation of lignocellulose to ethanol in batch and continuous reactors , 1995 .

[207]  J. Ståhlberg,et al.  The active sites of cellulases are involved in chiral recognition: a comparison of cellobiohydrolase 1 and endoglucanase 1 , 1996, FEBS letters.

[208]  A Bairoch,et al.  Updating the sequence-based classification of glycosyl hydrolases. , 1996, The Biochemical journal.

[209]  R. Warren Microbial hydrolysis of polysaccharides. , 1996, Annual review of microbiology.

[210]  J. D. Fontana,et al.  Pretreatment of sugar cane bagasse for enhanced ruminal digestion. , 1996, Applied biochemistry and biotechnology.

[211]  P. Birch,et al.  Lignocellulose degradation by Phanerochaete chrysosporium: gene families and gene expression for a complex process , 1996, Molecular microbiology.

[212]  T. Teeri,et al.  The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[213]  T. Teeri,et al.  The Cellulases Endoglucanase I and Cellobiohydrolase II of Trichoderma reesei Act Synergistically To Solubilize Native Cotton Cellulose but Not To Decrease Its Molecular Size , 1996, Applied and environmental microbiology.

[214]  L. Ruohonen,et al.  Characterization of a Double Cellulose-binding Domain , 1996, The Journal of Biological Chemistry.

[215]  B. Ganem,et al.  Identification of two functionally different classes of exocellulases. , 1996, Biochemistry.

[216]  L. Ruohonen,et al.  Cello-oligosaccharide hydrolysis by cellobiohydrolase II from Trichoderma reesei. Association and rate constants derived from an analysis of progress curves. , 1996, European journal of biochemistry.

[217]  J. Ståhlberg,et al.  Effect of potential binding site overlap to binding of cellulose to cellulose: a two‐dimensional simulation , 1996, FEBS letters.

[218]  Lee R. Lynd,et al.  Overview and evaluation of fuel ethanol from cellulosic biomass , 1996 .

[219]  B. Evans,et al.  Substrate-enzyme interactions in cellulase systems , 1996 .

[220]  A. C. O'sullivan Cellulose: the structure slowly unravels , 1997, Cellulose.

[221]  M. Bothwell,et al.  Binding capacities for Thermomonospora fusca E3, E4 and E5, the E3 binding domain, and Trichoderma reesei CBHI on Avicel and bacterial microcrystalline cellulose , 1997 .

[222]  D. E. Stokes Pasteur's Quadrant: Basic Science and Technological Innovation , 1997 .

[223]  S. Ito Alkaline cellulases from alkaliphilic Bacillus: Enzymatic properties, genetics, and application to detergents , 1997, Extremophiles.

[224]  Y. Amano,et al.  Synergistic actions of exo-type cellulases in the hydrolysis of cellulose with different crystallinities , 1997 .

[225]  B Henrissat,et al.  Structural and sequence-based classification of glycoside hydrolases. , 1997, Current opinion in structural biology.

[226]  T. Reinikainen,et al.  Trichoderma reesei cellobiohydrolase I with an endoglucanase cellulose-binding domain: action on bacterial microcrystalline cellulose. , 1997, Journal of biotechnology.

[227]  Richard T. Elander,et al.  Survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol , 1997 .

[228]  G J Kleywegt,et al.  The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 A resolution, and a comparison with related enzymes. , 1997, Journal of molecular biology.

[229]  C. Haynes,et al.  Surface Diffusion of Cellulases and Their Isolated Binding Domains on Cellulose* , 1997, The Journal of Biological Chemistry.

[230]  K. Riedel,et al.  Synergistic interaction of the Clostridium stercorarium cellulases Avicelase I (CelZ) and Avicelase II (CelY) in the degradation of microcrystalline cellulose , 1997 .

[231]  Tuula T. Teeri,et al.  Crystalline cellulose degradation : new insight into the function of cellobiohydrolases , 1997 .

[232]  J. Ståhlberg,et al.  Isotherms for adsorption of cellobiohydrolase I and II fromtrichoderma reesei on microcrystalline cellulose , 1997, Applied biochemistry and biotechnology.

[233]  Teh-An Hsu,et al.  Pretreatment of Biomass , 1997 .

[234]  G J Davies,et al.  Oligosaccharide specificity of a family 7 endoglucanase: insertion of potential sugar-binding subsites. , 1997, Journal of biotechnology.

[235]  C. Tardif,et al.  The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form , 1997, Journal of bacteriology.

[236]  R. Brown,et al.  A comparative structural characterization of two cellobiohydrolases from Trichoderma reesei: a high resolution electron microscopy study , 1997 .

[237]  L. Xia,et al.  Kinetics of Simultaneous Saccharification and Lactic Acid Fermentation Processes , 1997, Biotechnology progress.

[238]  D. Wilson,et al.  Surface residue mutations which change the substrate specificity of Thermomonospora fusca endoglucanase E2. , 1997, Journal of biotechnology.

[239]  M. Bhat,et al.  Cellulose degrading enzymes and their potential industrial applications. , 1997, Biotechnology advances.

[240]  Tuula T. Teeri,et al.  The roles and function of cellulose-binding domains , 1997 .

[241]  A. Striegel Theory and applications of DMAC/LICL in the analysis of polysaccharides , 1997 .

[242]  J. Sugiyama,et al.  ENZYMATIC HYDROLYSIS OF BACTERIAL CELLULOSE , 1997 .

[243]  K. Riedel,et al.  Intramolecular synergism in an engineered exo‐endo‐1,4‐β‐glucanase fusion protein , 1998, Molecular microbiology.

[244]  Enzymatic properties of the cysteinesulfinic acid derivative of the catalytic-base mutant Glu400-->Cys of glucoamylase from Aspergillus awamori. , 1998, Biochemistry.

[245]  T. Teeri,et al.  Modes of action on cotton and bacterial cellulose of a homologous endoglucanase-exoglucanase pair from Trichoderma reesei. , 1998, European journal of biochemistry.

[246]  V. Zverlov,et al.  Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile 'Anaerocellum thermophilum' with separate glycosyl hydrolase family 9 and 48 catalytic domains. , 1998, Microbiology.

[247]  T. Ghose,et al.  Fibril formation from cellulose by a novel protein from Trichoderma reesei: A non-hydrolytic cellulolytic component? , 1998 .

[248]  J. Sugiyama,et al.  Unidirectional processive action of cellobiohydrolase Cel7A on Valonia cellulose microcrystals , 1998, FEBS letters.

[249]  J. Saddler,et al.  Characterization of endoglucanases from the brown rot fungi Gloeophyllum sepiarium and Gloeophyllum trabeum , 1998 .

[250]  D. Gray,et al.  Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose , 1998 .

[251]  F. Tjerneld,et al.  Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. , 1998, Biotechnology and bioengineering.

[252]  D. Kilburn,et al.  Analysis of Molecular Size Distributions of Cellulose Molecules during Hydrolysis of Cellulose by Recombinant Cellulomonas fimiβ-1,4-Glucanases , 1998, Applied and Environmental Microbiology.

[253]  P Colonna,et al.  Starch granules: structure and biosynthesis. , 1998, International journal of biological macromolecules.

[254]  J. O. Baker,et al.  Hydrolysis of cellulose using ternary mixtures of purified cellulases. , 1998, Applied biochemistry and biotechnology.

[255]  L. Ruohonen,et al.  Tryptophan 272: an essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Cel6A , 1998, FEBS letters.

[256]  C. Divne,et al.  Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? , 1998, Biochemical Society transactions.

[257]  Thomas Heinze,et al.  Comprehensive cellulose chemistry , 1998 .

[258]  G. Pettersson,et al.  The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface-erosion model. , 1998, European journal of biochemistry.

[259]  M. Linder,et al.  Widely different off rates of two closely related cellulose-binding domains from Trichoderma reesei. , 1999, European journal of biochemistry.

[260]  J. Saddler,et al.  Substrate and Enzyme Characteristics that Limit Cellulose Hydrolysis , 1999, Biotechnology progress.

[261]  B. Henrissat,et al.  Digestion of crystalline cellulose substrates by the clostridium thermocellum cellulosome: structural and morphological aspects. , 1999, The Biochemical journal.

[262]  D. Wilson,et al.  Substrate heterogeneity causes the nonlinear kinetics of insoluble cellulose hydrolysis. , 1999, Biotechnology and bioengineering.

[263]  M. Tenkanen,et al.  Dynamic Interaction of Trichoderma reesei Cellobiohydrolases Cel6A and Cel7A and Cellulose at Equilibrium and during Hydrolysis , 1999, Applied and Environmental Microbiology.

[264]  L. Lynd,et al.  Biocommodity Engineering , 1999, Biotechnology progress.

[265]  J. Parajó,et al.  Cogeneration of cellobiose and glucose from pretreated wood and bioconversion to lactic acid: a kinetic study. , 1999, Journal of bioscience and bioengineering.

[266]  M. Penner,et al.  A simple individual-based model of insoluble polysaccharide hydrolysis: the potential for autosynergism with dual-activity glycosidases. , 1999, Journal of theoretical biology.

[267]  N. Mosier,et al.  Reaction kinetics, molecular action, and mechanisms of cellulolytic proteins. , 1999, Advances in biochemical engineering/biotechnology.

[268]  Himmel,et al.  Cellulase for commodity products from cellulosic biomass , 1999, Current opinion in biotechnology.

[269]  G. Pettersson,et al.  Acid hydrolysis of bacterial cellulose reveals different modes of synergistic action between cellobiohydrolase I and endoglucanase I. , 1999, European Journal of Biochemistry.

[270]  M. Penner,et al.  Physicochemical properties of pretreated poplar feedstocks during simultaneous saccharification and fermentation , 1999 .

[271]  Ronald D. Hatfield,et al.  Cell Wall Structural Foundations: Molecular Basis for Improving Forage Digestibilities , 1999 .

[272]  M. Schülein Protein engineering of cellulases. , 2000, Biochimica et biophysica acta.

[273]  E. Boyle,et al.  The global carbon cycle: a test of our knowledge of earth as a system. , 2000, Science.

[274]  M. Holtzapple,et al.  Fundamental factors affecting biomass enzymatic reactivity , 2000, Applied biochemistry and biotechnology.

[275]  B. Henrissat,et al.  Imaging the Enzymatic Digestion of Bacterial Cellulose Ribbons Reveals the Endo Character of the Cellobiohydrolase Cel6A from Humicola insolens and Its Mode of Synergy with Cellobiohydrolase Cel7A , 2000, Applied and Environmental Microbiology.

[276]  B. Evans,et al.  The mechanism of cellulase action on cotton fibers: evidence from atomic force microscopy. , 2000, Ultramicroscopy.

[277]  F. Vahabzadeh,et al.  A model for the rate of enzymatic hydrolysis of cellulose in heterogeneous solid-liquid systems , 2000 .

[278]  K. Oh,et al.  Bioconversion of cellulose into ethanol by nonisothermal simultaneous saccharification and fermentation , 2000, Applied biochemistry and biotechnology.

[279]  A. Koivula,et al.  Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[280]  S. Subramaniyan,et al.  Cellulase-free xylanases from Bacillus and other microorganisms. , 2000, FEMS microbiology letters.

[281]  Optimized mixtures of recombinant Humicola insolens cellulases for the biodegradation of crystalline cellulose. , 2001, Biotechnology and bioengineering.

[282]  G. Pettersson,et al.  Mechanism of substrate inhibition in cellulose synergistic degradation. , 2001, European journal of biochemistry.

[283]  W. Schwarz The cellulosome and cellulose degradation by anaerobic bacteria , 2001, Applied Microbiology and Biotechnology.

[284]  J. O. Baker,et al.  Fingerprinting Trichoderma reesei hydrolases in a commercial cellulase preparation , 2001, Applied biochemistry and biotechnology.

[285]  I. Kataeva,et al.  Properties and Mutation Analysis of the CelK Cellulose-Binding Domain from the Clostridium thermocellum Cellulosome , 2001, Journal of bacteriology.

[286]  Optimized mixtures of recombinant Humicola insolens cellulases for the biodegradation of crystalline cellulose. , 2001 .

[287]  L. Walker,et al.  Synergism in binary mixtures of Thermobifida fusca cellulases Cel6B, Cel9A, and Cel5A on BMCC and avicel , 2002, Applied biochemistry and biotechnology.

[288]  Ye Sun,et al.  Hydrolysis of lignocellulosic materials for ethanol production: a review. , 2002, Bioresource technology.

[289]  M. Penttilä,et al.  Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. , 2002, European journal of biochemistry.

[290]  G. Antranikian,et al.  Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. , 2002, Current opinion in chemical biology.

[291]  E. Bayer,et al.  Degradation of Cellulose Substrates by Cellulosome Chimeras , 2002, The Journal of Biological Chemistry.

[292]  L. Walker,et al.  Cooperative and Competitive Binding in Synergistic Mixtures of Thermobifida fuscaCellulases Cel5A, Cel6B, and Cel9A , 2002, Biotechnology progress.

[293]  I. S. Pretorius,et al.  Microbial Cellulose Utilization: Fundamentals and Biotechnology , 2002, Microbiology and Molecular Biology Reviews.

[294]  Robin D. Rogers,et al.  Dissolution of Cellose with Ionic Liquids , 2002 .

[295]  G. Kleywegt,et al.  The active site of cellobiohydrolase Cel6A from Trichoderma reesei: the roles of aspartic acids D221 and D175. , 2002, Journal of the American Chemical Society.

[296]  Johan Börjesson,et al.  Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose , 2002 .

[297]  L. Walker,et al.  Binding mechanisms for Thermobifida fusca Cel5A, Cel6B, and Cel48A cellulose‐binding modules on bacterial microcrystalline cellulose , 2002, Biotechnology and bioengineering.

[298]  Bruce E Dale,et al.  Predicting digestibility of ammonia fiber explosion (AFEX)-treated rice straw , 2002, Applied biochemistry and biotechnology.

[299]  Bin Yang,et al.  Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. , 2002, Applied biochemistry and biotechnology.

[300]  Y. Shoham,et al.  Microbial hemicellulases. , 2003, Current opinion in microbiology.

[301]  Y Y Lee,et al.  Pretreatment of corn stover by aqueous ammonia. , 2003, Bioresource technology.

[302]  Enzymatic hydrolysis of dissolved corn stalk hemicelluloses: reaction kinetics and modeling , 2003 .

[303]  S. Allen,et al.  Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: an overview, an experimental study and mathematical modelling , 2003 .

[304]  B. Prior,et al.  Thermomyces lanuginosus: properties of strains and their hemicellulases. , 2003, FEMS microbiology reviews.

[305]  J. Sugiyama,et al.  The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[306]  Guanjun Chen,et al.  Function of a Low Molecular Weight Peptide from Trichoderma pseudokoningii S38 During Cellulose Biodegradation , 2003, Current Microbiology.

[307]  Mike Jarvis,et al.  Chemistry: Cellulose stacks up , 2003, Nature.

[308]  T. Wood,et al.  Enzymology of cellulose degradation , 1990, Biodegradation.

[309]  D. Saul,et al.  celA, another gene coding for a multidomain cellulase from the extreme thermophile Caldocellum saccharolyticum , 1995, Applied Microbiology and Biotechnology.

[310]  H. Ooshima,et al.  Applicability of an empirical rate expression to enzymatic hydrolysis of cellulosic materials , 2004, Biotechnology Letters.

[311]  D. Wilson,et al.  Studies of Thermobifida fusca plant cell wall degrading enzymes. , 2004, Chemical record.

[312]  M. Penner,et al.  Quantitative analysis of cellulose-reducing ends , 2004, Applied biochemistry and biotechnology.

[313]  Y. Hong,et al.  Ionic strength effect on adsorption of cellobiohydrolases I and II on microcrystalline cellulose , 2000, Biotechnology Letters.

[314]  M. Claeyssens,et al.  Adsorption of two cellobiohydrolases fromTrichoderma reesei to Avicel: Evidence for “exo-exo” synergism and possible “loose complex” formation , 1990, Biotechnology Letters.

[315]  Ziniu Yu,et al.  Dissolution of Cellulose with Ionic Liquids and Its Application: A Mini‐Review , 2006 .

[316]  S. Sukumaran,et al.  Cellulose , 1924, Science.