An Eulerian finite element method for PDEs in time-dependent domains

The paper introduces a new finite element numerical method for the solution of partial differential equations on evolving domains. The approach uses a completely Eulerian description of the domain motion. The physical domain is embedded in a triangulated computational domain and can overlap the time-independent background mesh in an arbitrary way. The numerical method is based on finite difference discretizations of time derivatives and a standard geometrically unfitted finite element method with an additional stabilization term in the spatial domain. The performance and analysis of the method rely on the fundamental extension result in Sobolev spaces for functions defined on bounded domains. This paper includes a complete stability and error analysis, which accounts for discretization errors resulting from finite difference and finite element approximations as well as for geometric errors coming from a possible approximate recovery of the physical domain. Several numerical examples illustrate the theory and demonstrate the practical efficiency of the method.

[1]  Maxim A. Olshanskii,et al.  A narrow-band unfitted finite element method for elliptic PDEs posed on surfaces , 2014, Math. Comput..

[2]  Christoph Lehrenfeld,et al.  High order unfitted finite element methods on level set domains using isoparametric mappings , 2015, ArXiv.

[3]  Thomas J. R. Hughes,et al.  A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems , 1997 .

[4]  Ekkehard Ramm,et al.  Constraint Energy Momentum Algorithm and its application to non-linear dynamics of shells , 1996 .

[5]  Maxim A. Olshanskii,et al.  An Eulerian Space-Time Finite Element Method for Diffusion Problems on Evolving Surfaces , 2013, SIAM J. Numer. Anal..

[6]  E. Stein Singular Integrals and Differentiability Properties of Functions (PMS-30), Volume 30 , 1971 .

[7]  F. Kummer,et al.  Highly accurate surface and volume integration on implicit domains by means of moment‐fitting , 2013 .

[8]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[9]  Maxim A. Olshanskii,et al.  A Trace Finite Element Method for PDEs on Evolving Surfaces , 2016, SIAM J. Sci. Comput..

[10]  Christoph Lehrenfeld,et al.  Analysis of a Nitsche XFEM-DG Discretization for a Class of Two-Phase Mass Transport Problems , 2013, SIAM J. Numer. Anal..

[11]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[12]  Maxim Olshanskii,et al.  Numerical integration over implicitly defined domains for higher order unfitted finite element methods , 2016, 1601.06182.

[13]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[14]  Peter Hansbo,et al.  A cut finite element method for coupled bulk-surface problems on time-dependent domains , 2015, 1502.07142.

[15]  Peter Hansbo,et al.  Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem , 2014 .

[16]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[17]  Maxim A. Olshanskii,et al.  A TRACE FINITE ELEMENT METHOD FOR A CLASS OF COUPLED BULK-INTERFACE TRANSPORT PROBLEMS ∗ , 2014, 1406.7694.

[18]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[19]  M. Olshanskii,et al.  A Stabilized Trace Finite Element Method for Partial Differential Equations on Evolving Surfaces , 2017, SIAM J. Numer. Anal..

[20]  Christoph Lehrenfeld,et al.  Higher order unfitted isoparametric space-time FEM , 2018 .

[21]  T. Fries,et al.  Higher‐order accurate integration of implicit geometries , 2016 .

[22]  Ted Belytschko,et al.  Arbitrary discontinuities in space–time finite elements by level sets and X‐FEM , 2004 .

[23]  Benedikt Schott,et al.  Stabilized Cut Finite Element Methods for Complex Interface Coupled Flow Problems , 2017 .

[24]  R. I. Saye,et al.  High-Order Quadrature Methods for Implicitly Defined Surfaces and Volumes in Hyperrectangles , 2015, SIAM J. Sci. Comput..

[25]  Jörg Grande,et al.  Eulerian Finite Element Methods for Parabolic Equations on Moving Surfaces , 2014, SIAM J. Sci. Comput..

[26]  Joachim Schöberl,et al.  NETGEN An advancing front 2D/3D-mesh generator based on abstract rules , 1997 .

[27]  H. Howie Huang,et al.  Computational modeling of cardiac hemodynamics: Current status and future outlook , 2016, J. Comput. Phys..

[28]  Liang Zhong,et al.  Cardiac MRI based numerical modeling of left ventricular fluid dynamics with mitral valve incorporated. , 2016, Journal of biomechanics.

[29]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[30]  Y. Vassilevski,et al.  A quasi-Lagrangian finite element method for the Navier-Stokes equations in a time-dependent domain , 2017, 1707.06401.

[31]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[32]  Maxim A. Olshanskii,et al.  Error Analysis of a Space-Time Finite Element Method for Solving PDEs on Evolving Surfaces , 2014, SIAM J. Numer. Anal..

[33]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[34]  Christoph Lehrenfeld,et al.  The Nitsche XFEM-DG Space-Time Method and its Implementation in Three Space Dimensions , 2014, SIAM J. Sci. Comput..

[35]  André Massing,et al.  A stabilized cut discontinuous Galerkin framework: I. Elliptic boundary value and interface problems , 2018, Computer Methods in Applied Mechanics and Engineering.

[36]  André Massing,et al.  A Stabilized Nitsche Fictitious Domain Method for the Stokes Problem , 2012, J. Sci. Comput..

[37]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[38]  Charles M. Elliott,et al.  An abstract framework for parabolic PDEs on evolving spaces , 2014, 1403.4500.

[39]  E. TezduyarT.,et al.  A new strategy for finite element computations involving moving boundaries and interfacesthe deforming-spatial-domain/space-time procedure. II , 1992 .

[40]  Benedikt Schott,et al.  A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier–Stokes equations , 2014 .

[41]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[42]  C. M. Elliott,et al.  Finite element analysis for a coupled bulk-surface partial differential equation , 2013 .

[43]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[44]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[45]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .